Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomacromolecules ; 24(6): 2563-2574, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37195127

RESUMEN

Introducing desired functionalities into biomaterials is an effective way to obtain functionalized biomaterials. A versatile platform with the possibility of postsynthesis functionalization is highly desired but challenging in biomedical engineering. In this work, linear aliphatic polyesters with pendant hydroxyl (PEOH) groups were directly synthesized using renewable malic acid/tartaric acid as raw materials under mild conditions through the polyesterification reaction promoted by 1,1,3,3-tetramethylguanidine (TMG). The hydroxyl groups on PEOH provide an active stepping stone for the fabrication of demanded functionalized polyesters. We demonstrated the possibility of the PEOH as a reactive precursor for functional group transformation, coupling of bioactive molecules, and formation of crosslinking networks. Moreover, a theranostic nanoplatform (mPEG-b-(P7-asp&TPV)-b-mPEG NPs) was synthesized using PEOH as a reactive stepping stone by the programmable combination of the above functionalization methods. Overall, these hydroxyl-containing polyesters have great potential in biological applications.


Asunto(s)
Materiales Biocompatibles , Poliésteres , Polietilenglicoles , Radical Hidroxilo
2.
Exp Neurol ; 364: 114396, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37003486

RESUMEN

Parkinson's disease (PD) is characterized by dopaminergic neuron loss and α-synuclein (α-Syn) aggregates, but lacks effective treatments for the disease progression and non-motor symptoms. Recently, combined 40 Hz auditory and visual stimulation is emerging as a promising non-invasive method to decrease amyloid and improve cognition in Alzheimer's disease (AD), but whether this treatment can modify α-Syn-induced PD pathology remains unclear. Here we evaluated the effects of chronic exposure to 40 Hz and 80 Hz auditory and visual stimulation on α-Syn accumulation and the functional effects of 40 Hz stimulation on motor, cognitive and mood dysfunctions in PD mice. We found that 40 Hz and 80 Hz auditory and visual stimulation activated multiple cortical regions, entrained gamma oscillations and markedly attenuated p-α-Syn deposition in neurons, but not astrocytes, microglial cells in the primary and secondary motor cortex (M1, M2), medial prefrontal cortex (mPFC) and the striatum. Moreover, 40 Hz stimulation significantly reduced cell apoptosis in M1, increased the neuromuscular strength selectively in PD mice, which correlated with p-α-Syn reduction in the motor cortex. In addition, 40 Hz stimulation improved spatial working memory and decreased depressive-like behaviors specifically in PD mice, which correlated with p-α-Syn reduction in mPFC, but promoted anxiety-like behaviors and increased stress-related adreno-cortico-tropic-hormone (ACTH), corticosterone levels in the plasma of normal mice. Collectively, we demonstrated that chronic multisensory gamma stimulation (40 Hz and 80 Hz) significantly attenuates α-Syn deposition in neurons of the interconnected cortex and 40 Hz stimulation improved neuromuscular strength, spatial working memory, and reduced depressive behaviors, which support its non-invasive therapeutic potential for modifying PD progression and treating non-motor symptoms.


Asunto(s)
Enfermedad de Parkinson , Ratones , Animales , Enfermedad de Parkinson/patología , alfa-Sinucleína/metabolismo , Estimulación Luminosa , Encéfalo/metabolismo , Neuronas Dopaminérgicas/patología
3.
Water Res ; 229: 119399, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36462257

RESUMEN

The widespread use of chlorination (Cl2) in drinking water systems causes the selection of chlorine-resistant bacteria commonly with dense extracellular polymeric substance (EPS) against chlorine permeation, posing significant threat to public health. Herein, a nanowire-assisted electroporation (EP) via locally enhanced electric field was combined with Cl2 to construct the synergistic EP/Cl2 disinfection, with the purposes of inducing cell pores for chlorine permeation and bacterial inactivation. The synergistic effects of EP/Cl2 were observed for inactivation of chlorine-resistant Bacillus cereus (G+, 304 µg DOC-EPS/109 CFU) and Aeromonas media (G-, 35.8 µg), and chlorine-sensitive Escherichia coli (G-, 5.1 µg) that were frequent occurrence in drinking water systems. The EP/Cl2 enabled above 6 log B. cereus inactivation (undetectable live bacteria) at 1.5 V-EP and 0.9 mg/L-Cl2, which was much higher than the individual EP (1.11 log) and Cl2 (1.13 log) disinfection. The cell membrane integrity, intracellular free chlorine levels, and morphology analyses revealed that the electroporation-induced pores on cell wall/membrane destructed the bound EPS barrier for chlorine permeation, and the pore sizes were further enlarged by chlorine oxidation, hence facilitating bacterial inactivation via destroying the cell structures. The excellent disinfection performance for tap water and lake water also suggested its sound application potentials.


Asunto(s)
Desinfectantes , Agua Potable , Nanocables , Purificación del Agua , Cloro/farmacología , Halogenación , Matriz Extracelular de Sustancias Poliméricas , Desinfección , Bacterias , Electroporación , Escherichia coli , Desinfectantes/farmacología
4.
ACS Appl Mater Interfaces ; 14(38): 43759-43770, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36111970

RESUMEN

The low utilization efficiency of pesticides exerts an adverse impact on the environment and human health. Polymer-related controlled-release nanosized pesticide systems provide a promising and efficient way to overcome the problem. In this work, a biodegradable and light-responsive amphiphilic polymer was synthesized via 1,1,3,3-tetramethylguanidine-promoted polyesterification under mild conditions (low temperature, no vacuum, and no inert gas protection). We used this polymer to fabricate a light-triggered controlled-release nanosized pesticide system. The herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), was selected as a model drug to show its potential as a controlled-release pesticide system. It was found that the 2,4-D-loaded polymeric nanoparticles were stable without the treatment of UV, while the release rate of 2,4-D from the nanoparticles gradually increased after treatment with UV light. Pot trial showed that the 2,4-D-loaded polymer nanoparticles showed a good herbicidal effect. Finally, toxicity studies suggested that the polymer can reduce toxicity to nontarget organisms.


Asunto(s)
Herbicidas , Nanopartículas , Ácido 2,4-Diclorofenoxiacético , Preparaciones de Acción Retardada/farmacología , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Herbicidas/farmacología , Humanos , Polímeros
5.
Water Res ; 207: 117825, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34763279

RESUMEN

Still ∼10% of world's population has no sustainable access to centralized water supply system, causing millions of deaths annually by waterborne diseases. Here, we develop polypyrrole nanowire arrays (PPyNWs)-modified electrodes by polymerization of pyrrole on graphite felt for point-of-use water disinfection via low-voltage electroporation. A flow-through mode is specially applied to alleviate diffusion barrier of pyrrole in the porous graphite felt for uniform PPyNWs growth. The flow-through disinfection device using the optimized PPyNWs electrode achieves above 4-log removal for model virus (MS2) and gram-positive/negative bacteria (E. faecalis and E. coli) at applied voltage of 1.0 V and fluxes below 1000 and 2500 L/m2/h. Electroporation is recognized as the dominant disinfection mechanism by using square-wave alternating voltage of ±1.0 V to eliminate the electrochemical reactions. In-situ sampling experiments reveal that anode acts as the main disinfection function due to its electric field attraction with negatively charged E. coli cells. The live/dead baclight staining experiments indicate an adsorption-desorption process of E. coli cells on anode, and the adsorption-desorption balance determines the disinfection abilities of PPyNWs anode. Under 1.0 V and 2000 L/m2/h, the disinfection device enables above 4-log E. coli removal in tap water within 7-day operation with energy consumption below 20 mJ/L, suggesting its sound application potential for point-of-use water disinfection.


Asunto(s)
Nanocables , Purificación del Agua , Desinfección , Electrodos , Electroporación , Escherichia coli , Polímeros , Pirroles , Agua
6.
Biomed Res Int ; 2015: 357206, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26097844

RESUMEN

AIM: Comparing the clinical results of improved monosegment pedicle instrumentation (iMSPI) and short-segment pedicle instrumentation (SSPI) retrospectively. METHOD: 63 patients with thoracolumbar incomplete burst fracture were managed with iMSPI or SSPI. 30 patients were managed with iMSPI and fusion. 33 patients were managed with SSPI and fusion. Operative time, blood loss, postoperative drainage, and complications were recorded. Percentage of anterior body height compression (ABHC%) and sagittal index (SI) were obtained preoperatively, one week postoperatively, and at the last followup. RESULTS: The blood loss and postoperative drainage were significantly less in the iMSPI group than in SSPI group (P < 0.05). The follow-up duration of the two groups was not significantly different (P > 0.05). At 12 months postoperatively posterolateral fusion was obtained satisfactorily. Neither preoperative ABHC% and SI nor postoperative SI were significantly different (P > 0.05), but there was a significant difference in postoperative ABHC% (P = 0.000). The ABHC% and SI were not significantly different between the two groups at the last followup (P > 0.05). There were no fixation failures or other complications. SUMMARY: IMSPI yielded satisfactory results similar to those of SSPI in patients with type A3.1/3.2 thoracolumbar fractures. IMSPI is recommended for minor trauma, reducing one-segment fusion, and maximization of the remaining motor function.


Asunto(s)
Fijación Interna de Fracturas , Fracturas Óseas/terapia , Fracturas de la Columna Vertebral/terapia , Vértebras Torácicas/fisiopatología , Adolescente , Adulto , Femenino , Fracturas Óseas/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Tornillos Pediculares , Fracturas de la Columna Vertebral/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...