Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hortic Res ; 10(4): uhad025, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37090098

RESUMEN

Plant height is an important target trait for crop genetic improvement. Our previous work has identified a salt-tolerant C2H2 zinc finger, SlZF3, and its overexpression lines also showed a semi-dwarf phenotype, but the molecular mechanism remains to be elucidated. Here, we characterized the dwarf phenotype in detail. The dwarfism is caused by a decrease in stem internode cell elongation and deficiency of bioactive gibberellic acids (GAs), and can be rescued by exogenous GA3 treatment. Gene expression assays detected reduced expression of genes in the GA biosynthesis pathway of the overexpression lines, including SlGA20ox4. Several protein-DNA interaction methods confirmed that SlZF3 can directly bind to the SlGA20ox4 promoter and inhibit its expression, and the interaction can also occur for SlKS and SlKO. Overexpression of SlGA20ox4 in the SlZF3-overexpressing line can recover the dwarf phenotype. Therefore, SlZF3 regulates plant height by directly repressing genes in the tomato GA biosynthesis pathway.

2.
Plant J ; 113(5): 969-985, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36587293

RESUMEN

Folate (vitamin B9) is important for plant root development, but the mechanism is largely unknown. Here we characterized a root defective mutant, folb2, in Arabidopsis, which has severe developmental defects in the primary root. The root apical meristem of the folb2 mutant is impaired, and adventitious roots are frequently found at the root-hypocotyl junction. Positional cloning revealed that a 61-bp deletion is present in the predicted junction region of the promoter and the 5' untranslated region of AtFolB2, a gene encoding a dihydroneopterin aldolase that functions in folate biosynthesis. This mutation leads to a significant reduction in the transcript level of AtFolB2. Liquid chromatography-mass spectrometry analysis showed that the contents of the selected folate compounds were decreased in folb2. Arabidopsis AtFolB2 knockdown lines phenocopy the folb2 mutant. On the other hand, the application of exogenous 5-formyltetrahydrofolic acid could rescue the root phenotype of folb2, indicating that the root phenotype is indeed related to the folate level. Further analysis revealed that folate could promote rootward auxin transport through auxin transporters and that folate may affect particular auxin/indole-3-acetic acid proteins and auxin response factors. Our findings provide new insights into the important role of folic acid in shaping root structure.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Raíces de Plantas/metabolismo , Meristema/genética , Ácidos Indolacéticos/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación
3.
Front Plant Sci ; 14: 1324401, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38333039

RESUMEN

Tomatoes are susceptible to damage from cold temperatures in all stages of growth. Therefore, it is important to identify genetic resources and genes that can enhance tomato's ability to tolerate cold. In this study, a population of 223 tomato accessions was used to identify the sensitivity or tolerance of plants to cold stress. Transcriptome analysis of these accessions revealed that SUS3, a member of the sucrose synthase gene family, was induced by cold stress. We further investigated the role of SUS3 in cold stress by overexpression (OE) and RNA interference (RNAi). Compared with the wild type, SUS3-OE lines accumulated less MDA and electrolyte leakage and more proline and soluble sugar, maintained higher activities of SOD and CAT, reduced superoxide radicals, and suffered less membrane damage under cold. Thus, our findings indicate that SUS3 plays a crucial role in the response to cold stress. This study indicates that SUS3 may serve as a direct target for genetic engineering and improvement projects, which aim to augment the cold tolerance of tomato crops.

4.
New Phytol ; 236(6): 2294-2310, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36102042

RESUMEN

Trichomes that originate from plant aerial epidermis act as mechanical and chemical barriers against herbivores. Although several regulators have recently been identified, the regulatory pathway underlying multicellular trichome formation remains largely unknown in tomato. Here, we report a novel HD-ZIP IV transcription factor, Lanata (Ln), a missense mutation which caused the hairy phenotype. Biochemical analyses demonstrate that Ln separately interacts with two trichome regulators, Woolly (Wo) and Hair (H). Genetic and molecular evidence demonstrates that Ln directly regulates the expression of H. The interaction between Ln and Wo can increase trichome density by enhancing the expression of SlCycB2 and SlCycB3, which we previously showed are involved in tomato trichome formation. Furthermore, SlCycB2 represses the transactivation of the SlCycB3 gene by Ln and vice versa. Our findings provide new insights into the novel regulatory network controlling multicellular trichome formation in tomato.


Asunto(s)
Solanum lycopersicum , Tricomas , Tricomas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Epidermis de la Planta/metabolismo
5.
Hortic Res ; 9: uhac121, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35937861

RESUMEN

Fruit shape is an important biological trait that is also of special commercial value in tomato. The SUN gene has been known as a key regulator of tomato fruit elongation for years, but the molecular mechanisms underlying its transcriptional regulation remain little understood. Here, a unique BZR1-like transcription factor, BZR1.7, was identified as a trans-acting factor of the SUN gene promoter that bound to the conserved E-box of the promoter to promote SUN gene expression. Overexpression of BZR1.7 in tomato led to elevated SUN gene expression and formation of elongated fruits. Plants of the BZR1.7 knockout mutant created by gene editing did not exhibit an observable fruit shape phenotype, suggesting possible functional redundancy of BZR1-like genes in tomato. There were seven BZR1-like genes in the tomato genome and overexpression of BZR1.5 and BZR1.6 led to elongated fruit phenotypes similar to those observed in the BZR1.7 overexpression lines, further supporting the notion of functional redundancy of BZR1-like genes in tomato fruit shape specification. Microscopic analysis revealed that there was a decreased number of cell layers in the fruit pericarp in the BZR1.7 overexpression lines. These findings offer new insights into the regulatory mechanism by which BZR1.7 promotes SUN gene expression and regulates fruit elongation in tomato.

6.
Plants (Basel) ; 11(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36015396

RESUMEN

Grafting is an important agricultural practice to control soil-borne diseases, alleviate continuous cropping problems and improve stress tolerance in vegetable industry, but it is relatively less applied in pepper production. A recent study has revealed the key roles of ß-1, 4-glucanase in graft survival. We speculated that the GH9 family gene encoding glucanase may be involved in the obstacles of pepper grafting. Therefore, we performed a systematic analysis of the GH9 family in pepper, tomato and tobacco. A total of 25, 24 and 42 GH9 genes were identified from these three species. Compared with the orthologues of other solanaceous crops, the deduced pepper GH9B3 protein lacks a conserved motif (Motif 5). Promoter cis-element analysis revealed that a wound-responsive element exists in the promoter of tobacco NbGH9B3, but it is absent in the GH9B3 promoter of most solanaceous crops. The auxin-responsive related element is absent in CaGH9B3 promoter, but it presents in the promoter of tobacco, tomato, potato and petunia GH9B3. Tissue and induction expression profiles indicated that GH9 family genes are functionally differentiated. Nine GH9 genes, including CaGH9B3, were detected expressing in pepper stem. The expression patterns of NbGH9B3 and CaGH9B3 in grafting were different in our test condition, with obvious induction in tobacco but repression in pepper. Furthermore, weighted correlation network analysis (WGCNA) revealed 58 transcription factor genes highly co-expressed with NbGH9B3. Eight WRKY binding sites were detected in the promoter of NbGH9B3, and several NbWRKYs were highly co-expressed with NbGH9B3. In conclusion, the missing of Motif 5 in CaGH9B3, and lacking of wound- and auxin-responsive elements in the gene promoter are the potential causes of grafting-related problems in pepper. WRKY family transcription factors could be important regulator of NbGH9B3 in tobacco grafting. Our analysis points out the putative regulators of NbGH9B3, which would be helpful to the functional validation and the study of signal pathways related to grafting in the future.

7.
Theor Appl Genet ; 135(10): 3455-3468, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35963933

RESUMEN

KEY MESSAGE: The causal gene, CaHY5 of a chemical induced green-hypocotyl mutant was identified by molecular mapping. CaHY5 regulates anthocyanin accumulation by directly binding to the promoter of genes in anthocyanin pathway. Morphological markers at seedling stage are useful indicators for F1 hybrid seeds screening. Pepper is a worldwide vegetable with diverse uses, and F1 hybrids are popular in the pepper industry. Hypocotyl color is a useful marker to identify F1 hybrid seeds. However, most pepper accessions have purple hypocotyl caused by anthocyanin accumulation, while green hypocotyl pepper accessions are rare. In this study, we identified a green hypocotyl mutant (e1898) from a pepper ethylmethanesulfonate (EMS) mutant library. By combining bulked segregant RNA-seq (BSR), genome resequencing and recombinant analysis, it was found that CaHY5 is the causal gene of this mutant. Virus-induced gene silencing (VIGS) of CaHY5 resulted in the decrease of anthocyanin accumulation in pepper hypocotyls. RNA-seq data showed that many genes related to anthocyanin biosynthesis and transport decreased significantly in the mutant. Yeast one-hybrid (Y1H) assays showed that CaHY5 can bind to the promoter of CaF3H, CaF3'5'H, CaDFR, CaANS and CaGST, which are important genes in anthocyanin biosynthesis or transport. Our results indicate that CaHY5 directly regulates anthocyanin biosynthesis and transport, thus governing anthocyanin accumulation in pepper hypocotyl. The mutant and gene identified in this work shall be valuable in the purity control of hybrid pepper seeds.


Asunto(s)
Antocianinas , Capsicum , Capsicum/genética , Regulación de la Expresión Génica de las Plantas , Hipocótilo/genética , Hipocótilo/metabolismo , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Plant Physiol ; 190(1): 576-591, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-35640121

RESUMEN

Plant mitochondrial fatty acid synthesis (mtFAS) appears to be important in photorespiration based on the reverse genetics research from Arabidopsis (Arabidopsis thaliana) in recent years, but its roles in plant development have not been completely explored. Here, we identified a tomato (Solanum lycopersicum) mutant, fern-like, which displays pleiotropic phenotypes including dwarfism, yellowing, curly leaves, and increased axillary buds. Positional cloning and genetic and heterozygous complementation tests revealed that the underlying gene FERN encodes a 3-hydroxyl-ACP dehydratase enzyme involved in mtFAS. FERN was causally involved in tomato morphogenesis by affecting photorespiration, energy supply, and the homeostasis of reactive oxygen species. Based on lipidome data, FERN and the mtFAS pathway may modulate tomato development by influencing mitochondrial membrane lipid composition and other lipid metabolic pathways. These findings provide important insights into the roles and importance of mtFAS in tomato development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica de las Plantas , Lípidos , Solanum lycopersicum/metabolismo , Proteínas de Plantas/metabolismo
10.
Plant Cell ; 33(10): 3293-3308, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34338777

RESUMEN

The degree of stigma exsertion has a major influence on self-pollination efficiency in tomato, and its improvement is essential for raising productivity and for fixing advantageous traits in cultivated tomato. To study the evolution of stigma exsertion degree in tomato, we searched for genes associated with this trait and other aspects of flower morphology, including the lengths of anthers, styles, and ovaries. We performed a genome-wide association on 277 tomato accessions and discovered a novel stigma exsertion gene (SE3.1). We reannotated the structure of the gene, which encodes a C2H2-type zinc finger transcription factor. A mutation of the lead single nucleotide polymorphism creates a premature termination codon in SE3.1 and an inserted stigma in cultivated tomatoes. SE3.1 is essential for the conversion of flush stigmas to inserted stigmas. This conversion has a major impact on the rate of self-fertilization. Intriguingly, we found that both SE3.1 and Style2.1 contribute to the transition from stigma exsertion to insertion during the domestication and improvement of tomato. Style2.1 controls the first step of exserted stigmas to flush stigmas, and SE3.1 controls the second step of flush stigmas to inserted stigmas. We provide molecular details for the two-step process that controls the transition from stigma exsertion to insertion, which is of great agronomic importance in tomato.


Asunto(s)
Estudio de Asociación del Genoma Completo , Proteínas de Plantas/genética , Polinización/genética , Solanum lycopersicum/fisiología , Factores de Transcripción/genética , Solanum lycopersicum/genética , Mutación , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo
11.
Hortic Res ; 8(1): 148, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34193825

RESUMEN

There is a critical need to identify germplasm resources and genes that promote cold tolerance of tomato because global tomato production is threatened by cold stress. We found that the expression of an F-box gene family member named ShPP2-1 from Solanum habrochaites is cold inducible and studied its contribution to cold tolerance. Overexpression of ShPP2-1 in cultivated tomato (AC) reduced cold tolerance by intensifying damage to cell membranes. To explore the underlying molecular mechanism, we conducted a yeast two-hybrid library screen and found that a protein containing ACT domain repeats named ACR11A interacts with PP2-1. Overexpression of SlACR11A in AC enhanced the cold tolerance of seedlings and germinating seeds. Cold tolerance decreased in tomato plants that overexpressed both of these genes. Additionally, we performed seed germination experiments in the cold with 177 tomato accessions and identified two alleles of SlACR11A that differ in one single-nucleotide polymorphism. We found that one of these alleles, SlACR11AG, is significantly enriched in cold-tolerant tomato plants. Taken together, our findings indicate that the combination of low expression levels of PP2-1 and high expression levels of ACR11A can promote cold tolerance. These genes may therefore serve as direct targets for both genetic engineering and improvement projects that aim to enhance the cold tolerance of tomato.

12.
Hortic Res ; 8(1): 163, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34193855

RESUMEN

Anthocyanins play vital roles in plant stress tolerance and growth regulation. Previously, we reported that the photomorphogenesis-related transcription factor SlBBX20 regulates anthocyanin accumulation in tomato. However, the underlying mechanism remains unclear. Here, we showed that SlBBX20 promotes anthocyanin biosynthesis by binding the promoter of the anthocyanin biosynthesis gene SlDFR, suggesting that SlBBX20 directly activates anthocyanin biosynthesis genes. Furthermore, we found by yeast two-hybrid screening that SlBBX20 interacts with the COP9 signalosome subunit SlCSN5-2, and the interaction was confirmed by bimolecular fluorescence complementation and coimmunoprecipitation assays. SlCSN5 gene silencing led to anthocyanin hyperaccumulation in the transgenic tomato calli and shoots, and SlCSN5-2 overexpression decreased anthocyanin accumulation, suggesting thSlCSN5-2 enhanced the ubiquitination of SlBBX20 and promoted the degradation of SlBBX20 in vivo. Consistently, silencing the SlCSN5-2 homolog in tobacco significantly increased the accumulation of the SlBBX20 protein. Since SlBBX20 is a vital regulator of photomorphogenesis, the SlBBX20-SlCSN5-2 module may represent a novel regulatory pathway in light-induced anthocyanin biosynthesis.

13.
PLoS Genet ; 15(5): e1008149, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31067226

RESUMEN

Tomato (Solanum lycopersicum) is one of the highest-value vegetable crops worldwide. Understanding the genetic regulation of primary metabolite levels can inform efforts aimed toward improving the nutrition of commercial tomato cultivars, while maintaining key traits such as yield and stress tolerance. We identified 388 suggestive association loci (including 126 significant loci) for 92 metabolic traits including nutrition and flavor-related loci by genome-wide association study from 302 accessions in two different environments. Among them, an ascorbate quantitative trait locus TFA9 (TOMATO FRUIT ASCORBATEON CHROMOSOME 9) co-localized with SlbHLH59, which promotes high ascorbate accumulation by directly binding to the promoter of structural genes involved in the D-mannose/L-galactose pathway. The causal mutation of TFA9 is an 8-bp InDel, named InDel_8, located in the promoter region of SlbHLH59 and spanned a 5'UTR Py-rich stretch motif affecting its expression. Phylogenetic analysis revealed that differentially expressed SlbHLH59 alleles were selected during tomato domestication. Our results provide a dramatic illustration of how ascorbate biosynthesis can be regulated and was selected during the domestication of tomato. Furthermore, the findings provide novel genetic insights into natural variation of metabolites in tomato fruit, and will promote efficient utilization of metabolite traits in tomato improvement.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Alelos , Ácido Ascórbico/genética , Ácido Ascórbico/metabolismo , Mapeo Cromosómico/métodos , Frutas/genética , Galactosa/biosíntesis , Galactosa/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Variación Genética/genética , Genoma de Planta/genética , Estudio de Asociación del Genoma Completo , Manosa/biosíntesis , Manosa/metabolismo , Filogenia , Regiones Promotoras Genéticas/genética , Sitios de Carácter Cuantitativo/genética
14.
New Phytol ; 221(1): 279-294, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30101463

RESUMEN

Carotenoids play important roles in many biological processes, such as light harvesting, photoprotection and visual attraction in plants. However, the regulation of carotenoid biosynthesis is still not fully understood. Here, we demonstrate that SlBBX20, a B-box (BBX) zinc-finger transcription factor, is a positive regulator of carotenoid accumulation in tomato (Solanum lycopersicum). Overexpression of SlBBX20 leads to dark green fruits and leaves and higher levels of carotenoids relative to the wild-type. Interactions between SlBBX20 and DE-ETIOLATED 1 (SlDET1) lead to the ubiquitination and 26S proteasome-mediated degradation of SlBBX20. Moreover, deficiencies in the components of the CUL4-DDB1-DET1 complex enhanced the stability of the SlBBX20 protein. Thus, we conclude that SlBBX20 is a substrate of the CUL4-DDB1-DET1 E3 ligase. SlBBX20 can activate the expression of PHYTOENE SYNTHASE 1, encoding a key enzyme in carotenoid biosynthesis, by directly binding to a G-box motif in its promoter, which results in the elevated levels of carotenoids in SlBBX20 overexpression lines. We identified a key regulator of carotenoid biosynthesis and demonstrated that the stability of SlBBX20 is regulated by ubiquitination. These findings provide us a new target for the genetic improvement of the nutritional quality of tomato fruit.


Asunto(s)
Carotenoides/metabolismo , Geranilgeranil-Difosfato Geranilgeraniltransferasa/metabolismo , Proteínas de Plantas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Solanum lycopersicum/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Geranilgeranil-Difosfato Geranilgeraniltransferasa/genética , Solanum lycopersicum/genética , Fotosíntesis/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Complejo de la Endopetidasa Proteasomal/genética , Nicotiana/genética , Nicotiana/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos , Ubiquitinación
15.
Food Chem ; 274: 170-179, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30372923

RESUMEN

Fruit metabolites are regulated by different phytohormones; however, this needs to be investigated. Dynamic metabolite profiling, based on gas chromatography-mass spectrometry, has been conducted on the fruit of tomato cultivar Micro-Tom and its five hormone mutants: dpy, not, dgt, epi and pro. In total, 48 metabolites were quantified, including sugars, organic acids and amino acids. The results demonstrated that ABA had a greater effect on the regulation of primary metabolism in tomato fruit, while ethylene can play an important role in the transition of primary to secondary metabolism. Besides, results from enzyme activities and transcript abundance involved in primary metabolism suggested that AIV and HXK4 could play key roles in the accumulation of the main sugars. To the best of our knowledge, this is the first comprehensive analysis of the link between hormone and metabolite change during fruit development in a collection of mutants with diverse hormone pathways.


Asunto(s)
Frutas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Solanum lycopersicum/metabolismo , Ácido Abscísico/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Metabolismo de los Hidratos de Carbono/genética , Etilenos/metabolismo , Frutas/química , Frutas/genética , Cromatografía de Gases y Espectrometría de Masas , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Mutación , Reguladores del Crecimiento de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Metabolismo Secundario
16.
Funct Integr Genomics ; 18(1): 67-78, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28956210

RESUMEN

Drought is a major abiotic stress affecting crop productivity and quality. As a class of noncoding RNA, microRNA (miRNA) plays important roles in plant growth, development, and stress response. However, their response and roles in tomato drought stress is largely unknown. Here, by using high-throughput sequencing, we compared the miRNA profiles before and after drought treatment in two tomato genotypes: M82, a drought-sensitive cultivated tomato (Solanum lycopersicum), and IL2-5, a drought-tolerant introgression line derived from M82 and the tomato wild species S. pennellii (LA0716). A total of 108 conserved and 208 novel miRNAs were identified, among them, 32 and 68 were significantly changed in expression after stress. Further, 1936 putative target genes were predicted for those differentially-expressed miRNAs. Gene ontology and pathway analysis showed that many of the target genes were involved in stress resistance, such as genes in GO terms including response to stress, defense response, response to stimulus, phosphorylation, and signal transduction. Our results suggested that miRNAs play an essential role in the drought response of tomato. This work will help to further characterize specific miRNAs functioning in drought tolerance.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , MicroARNs/genética , Análisis de Secuencia de ARN/métodos , Solanum lycopersicum/genética , Ontología de Genes
17.
Plant Biotechnol J ; 16(6): 1201-1213, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29193661

RESUMEN

Abiotic stresses are a major cause of crop loss. Ascorbic acid (AsA) promotes stress tolerance by scavenging reactive oxygen species (ROS), which accumulate when plants experience abiotic stress. Although the biosynthesis and metabolism of AsA are well established, the genes that regulate these pathways remain largely unexplored. Here, we report on a novel regulatory gene from tomato (Solanum lycopersicum) named SlZF3 that encodes a Cys2/His2-type zinc-finger protein with an EAR repression domain. The expression of SlZF3 was rapidly induced by NaCl treatments. The overexpression of SlZF3 significantly increased the levels of AsA in tomato and Arabidopsis. Consequently, the AsA-mediated ROS-scavenging capacity of the SlZF3-overexpressing plants was increased, which enhanced the salt tolerance of these plants. Protein-protein interaction assays demonstrated that SlZF3 directly binds CSN5B, a key component of the COP9 signalosome. This interaction inhibited the binding of CSN5B to VTC1, a GDP-mannose pyrophosphorylase that contributes to AsA biosynthesis. We found that the EAR domain promoted the stability of SlZF3 but was not required for the interaction between SlZF3 and CSN5B. Our findings indicate that SlZF3 simultaneously promotes the accumulation of AsA and enhances plant salt-stress tolerance.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Ácido Ascórbico/biosíntesis , Complejo del Señalosoma COP9/metabolismo , Dedos de Zinc CYS2-HIS2 , Tolerancia a la Sal/genética , Solanum lycopersicum/genética , Arabidopsis , Peróxido de Hidrógeno/metabolismo
18.
Plant Cell ; 29(9): 2249-2268, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28814642

RESUMEN

Deciphering the mechanism of malate accumulation in plants would contribute to a greater understanding of plant chemistry, which has implications for improving flavor quality in crop species and enhancing human health benefits. However, the regulation of malate metabolism is poorly understood in crops such as tomato (Solanum lycopersicum). Here, we integrated a metabolite-based genome-wide association study with linkage mapping and gene functional studies to characterize the genetics of malate accumulation in a global collection of tomato accessions with broad genetic diversity. We report that TFM6 (tomato fruit malate 6), which corresponds to Al-ACTIVATED MALATE TRANSPORTER9 (Sl-ALMT9 in tomato), is the major quantitative trait locus responsible for variation in fruit malate accumulation among tomato genotypes. A 3-bp indel in the promoter region of Sl-ALMT9 was linked to high fruit malate content. Further analysis indicated that this indel disrupts a W-box binding site in the Sl-ALMT9 promoter, which prevents binding of the WRKY transcription repressor Sl-WRKY42, thereby alleviating the repression of Sl-ALMT9 expression and promoting high fruit malate accumulation. Evolutionary analysis revealed that this highly expressed Sl-ALMT9 allele was selected for during tomato domestication. Furthermore, vacuole membrane-localized Sl-ALMT9 increases in abundance following Al treatment, thereby elevating malate transport and enhancing Al resistance.


Asunto(s)
Aluminio/toxicidad , Domesticación , Frutas/metabolismo , Mutación INDEL/genética , Malatos/metabolismo , Proteínas de Plantas/genética , Regiones Promotoras Genéticas/genética , Solanum lycopersicum/genética , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Mapeo Cromosómico , Segregación Cromosómica , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Marcadores Genéticos , Variación Genética , Estudio de Asociación del Genoma Completo , Técnicas de Genotipaje , Humanos , Solanum lycopersicum/efectos de los fármacos , Proteínas de Plantas/metabolismo , Eliminación de Secuencia , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo
19.
BMC Genomics ; 18(1): 481, 2017 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-28651543

RESUMEN

BACKGROUND: Abiotic stresses cause severe loss of crop production. Among them, drought is one of the most frequent environmental stresses, which limits crop growth, development and productivity. Plant drought tolerance is fine-tuned by a complex gene regulatory network. Understanding the molecular regulation of this polygenic trait is crucial for the eventual success to improve plant yield and quality. Recent studies have demonstrated that microRNAs play critical roles in plant drought tolerance. However, little is known about the microRNA in drought response of the model plant tomato. Here, we described the profiling of drought-responsive microRNA and mRNA in tomato using high-throughput next-generation sequencing. RESULTS: Drought stress was applied on the seedlings of M82, a drought-sensitive cultivated tomato genotype, and IL9-1, a drought-tolerant introgression line derived from the stress-resistant wild species Solanum pennellii LA0716 and M82. Under drought, IL9-1 performed superior than M82 regarding survival rate, H2O2 elimination and leaf turgor maintenance. A total of four small RNA and eight mRNA libraries were constructed and sequenced using Illumina sequencing technology. 105 conserved and 179 novel microRNAs were identified, among them, 54 and 98 were differentially expressed upon drought stress, respectively. The majority of the differentially-expressed conserved microRNAs was up-regulated in IL9-1 whereas down-regulated in M82. Under drought stress, 2714 and 1161 genes were found to be differentially expressed in M82 and IL9-1, respectively, and many of their homologues are involved in plant stress, such as genes encoding transcription factor and protein kinase. Various pathways involved in abiotic stress were revealed by Gene Ontology and pathway analysis. The mRNA sequencing results indicated that most of the target genes were regulated by their corresponding microRNAs, which suggested that microRNAs may play essential roles in the drought tolerance of tomato. CONCLUSION: In this study, numerous microRNAs and mRNAs involved in the drought response of tomato were identified using high-throughput sequencing, which will provide new insights into the complex regulatory network of plant adaption to drought stress. This work will also help to exploit new players functioning in plant drought-stress tolerance.


Asunto(s)
Sequías , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/genética , Análisis de Secuencia de ARN , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Secuencia Conservada , Genotipo , ARN Mensajero/genética , Estrés Fisiológico/genética
20.
Front Plant Sci ; 7: 1552, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27807440

RESUMEN

The B-BOX (BBX) proteins encode a class of zinc-finger transcription factors possessing one or two B-BOX domains and in some cases an additional CCT (CO, CO-like and TOC1) motif, which play important roles in regulating plant growth, development and stress response. Nevertheless, no systematic study of BBX genes has undertaken in tomato (Solanum lycopersicum). Here we present the results of a genome-wide analysis of the 29 BBX genes in this important vegetable species. Their structures, conserved domains, phylogenetic relationships, subcellular localizations, and promoter cis-regulatory elements were analyzed; their tissue expression profiles and expression patterns under various hormones and stress treatments were also investigated in detail. Tomato BBX genes can be divided into five subfamilies, and twelve of them were found to be segmentally duplicated. Real-time quantitative PCR analysis showed that most BBX genes exhibited different temporal and spatial expression patterns. The expression of most BBX genes can be induced by drought, polyethylene glycol-6000 or heat stress. Some BBX genes were induced strongly by phytohormones such as abscisic acid, gibberellic acid, or ethephon. The majority of tomato BBX proteins was predicted to be located in nuclei, and the transient expression assay using Arabidopsis mesophyll protoplasts demonstrated that all the seven BBX members tested (SlBBX5, 7, 15, 17, 20, 22, and 24) were localized in nucleus. Our analysis of tomato BBX genes on the genome scale would provide valuable information for future functional characterization of specific genes in this family.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...