Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38712211

RESUMEN

Humans and animals maintain a consistent representation of their facing direction during spatial navigation. In rodents, head direction cells are believed to support this "neural compass", but identifying a similar mechanism in humans during dynamic naturalistic navigation has been challenging. To address this issue, we acquired fMRI data while participants freely navigated through a virtual reality city. Encoding model analyses revealed voxel clusters in retrosplenial complex and superior parietal lobule that exhibited reliable tuning as a function of facing direction. Crucially, these directional tunings were consistent across perceptually different versions of the city, spatially separated locations within the city, and motivationally distinct phases of the behavioral task. Analysis of the model weights indicated that these regions may represent facing direction relative to the principal axis of the environment. These findings reveal specific mechanisms in the human brain that allow us to maintain a sense of direction during naturalistic, dynamic navigation.

2.
Opt Lett ; 49(6): 1508-1511, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489437

RESUMEN

Spontaneous infrared radiation dissipation is a critical factor in facilitating object cooling, which influences the thermal stability and stealth efficacy of infrared stealth devices. Furthermore, the compatibility between efficient visible, infrared, and radar stealth is challenging due to different camouflage principles in different bands. This Letter presents a five-layer etched film structure to achieve multispectral stealth, and the utilization of the high-quality ultrathin silver films enables highly efficient infrared selective emission. This etched film structure with few layers demonstrates potential applications in diverse domains, including multi-band anti-detection and multispectral manipulation.

3.
Research (Wash D C) ; 7: 0334, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476476

RESUMEN

Intelligent metasurfaces have garnered widespread attention owing to their properties of sensing electromagnetic (EM) environments and multifunctional adaptive EM wave manipulation. However, intelligent metasurfaces with broadband high optical transparency have not been studied to date, and most of the previous intelligent metasurfaces lack an integrated design for their actuators and sensors, resulting in lower integration levels. This study proposes a novel intelligent metasurface with adaptive EM wave manipulation ability and high optical transparency from visible to infrared bands. This metasurface consists of a transparent and current-controlled reconfigurable metasurface as an actuator by integrating patterned vanadium dioxide (VO2) into metal-meshed resonant units, transparent broadband microstrip antenna as a sensor, recognition-and-feedback module, and actuator- and sensor-integrated design on the same substrate. The EM-regulating capability of the designed transparent intelligent metasurface is theoretically analyzed using the coupled mode theory, and a prototype metasurface device is fabricated for experimental verification. Simulation and experimental results demonstrate that the metasurface exhibits over 80% normalized transmittance from 380 to 5,000 nm and adaptive EM wave manipulation (reflective strong shielding function with a shielding efficiency of over 24 dB, high transmittance function with a transmission loss of 1.24 dB, and strong absorption function with an absorption of 97%) according to the EM wave power parameters without manual intervention. This study provides an avenue for transparent intelligent metasurfaces with extensive application prospects in areas such as intelligent optical windows, radar enclosures, and communication.

4.
Nanoscale ; 16(12): 6033-6040, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38411005

RESUMEN

Herein, we present the investigation of the visible light transparency and optical limiting characteristics of one dimensional photonic crystals with LiNbO3 defects fabricated by the sputtering technique. Transmission spectroscopy measurements reveal a broad photonic band gap with a 1064 nm defect mode and high transmittance within the visible range. The optical energy limiting performance in the photonic crystal can be attributed to the strong confinement of the optical field surrounding the LiNbO3 defect layer. The low energy 1064 nm laser demonstrates a transmittance of 82.15%. Notably, the optical limiting threshold is lower at 62.03 mJ cm-2 in comparison with conventional optical limiting materials. Additionally, the optical limiter achieves a transmittance of 68.57% within the visible light band.

5.
Nanoscale ; 16(4): 1897-1905, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38170533

RESUMEN

In this work, we propose a meshed miniaturized frequency-selective metasurface (MMFSM), which is insensitive to the incidence microwave angle and has great optical imaging quality by extending the effective length of the aperture within the periodic unit and replacing large metal parts with different metallic meshes. Experimental results indicated that our MMFSM had an average normalized transmittance of 87.2% in the visible-near-infrared band, a passband loss of 1.446 dB, and an oblique incidence stabilization angle of 50° (the passband loss was less than 2.38 dB). These are excellent characteristics required for applications in the optics and communication fields.

6.
ACS Appl Mater Interfaces ; 15(42): 49487-49499, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37816124

RESUMEN

In the era of fifth-generation networks and Internet-of-Things, the use of multiband electromagnetic radiation shielding is highly desirable for next-generation electronic devices. Herein, we report a systematic exploration of optoelectronic behaviors of ultrathin-silver-based shielding prototype (USP) film structures at the nanometer scale, unlocking the transparent ultrabroadband electromagnetic interference (EMI) shielding from microwave to terahertz frequencies. A theoretical model is proposed to optimize USP structures to achieve increased transparency, whereby optical antireflection resonances are introduced in dielectrics in conjunction with remarkable EMI shielding capability. USP can realize a state-of-the-art effective electromagnetic radiation shielding bandwidth with measured frequencies from 8 GHz up to 2 THz. Experimental results show that a basic USP (dAg = 10 nm) offers an average shielding efficiency of ∼27.5 dB from the X- to Ka-bands (8-40 GHz) and maintains a stable shielding performance of ∼22.6 dB across a broad range of 0.5-2 THz, with a measured optical transmittance of ∼95.2%. This extraordinary performance of ultrathin-silver-based film structures provides a new ultrabroadband EMI shielding paradigm for potential applications in next-generation electronics.

7.
ACS Appl Mater Interfaces ; 15(24): 29440-29448, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37284791

RESUMEN

Metasurfaces with tunable microwave transmission amplitude and broadband high optical transparency hold great promise for the next generation of optically transparent and smart electromagnetic transmission devices. In this study, a novel and electrically tunable metasurface with high optical transparency in the visible-infrared broadband is proposed and fabricated by integrating meshed electric-LC resonators and patterned VO2. Simulations and experiments demonstrate that the designed metasurface has a normalized transmittance greater than 88% over a wide wavelength range of 380-5000 nm, and the transmission amplitude can be continuously tuned from -1.27 to -15.38 dB at 10 GHz under current excitation, indicating significantly limited passband loss and strong electromagnetic shielding capability in the on and off cases, respectively. This study provides a simple, practical, and feasible method for optically transparent metasurfaces with electrically tunable microwave amplitude, paving the way for the application of VO2 in multiple fields such as intelligent optical windows, smart radomes, microwave communications, and optically transparent electromagnetic stealth.

8.
Nat Commun ; 14(1): 2063, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37045869

RESUMEN

Differential interference contrast (DIC) microscopy allows high-contrast, low-phototoxicity, and label-free imaging of transparent biological objects, and has been applied in the field of cellular morphology, cell segmentation, particle tracking, optical measurement and others. Commercial DIC microscopy based on Nomarski or Wollaston prism resorts to the interference of two polarized waves with a lateral differential offset (shear) and axial phase shift (bias). However, the shear generated by these prisms is limited to the rectilinear direction, unfortunately resulting in anisotropic contrast imaging. Here we propose an ultracompact metasurface-assisted isotropic DIC (i-DIC) microscopy based on a grand original pattern of radial shear interferometry, that converts the rectilinear shear into rotationally symmetric along radial direction, enabling single-shot isotropic imaging capabilities. The i-DIC presents a complementary fusion of typical meta-optics, traditional microscopes and integrated optical system, and showcases the promising and synergetic advancements in edge detection, particle motion tracking, and label-free cellular imaging.

9.
J Colloid Interface Sci ; 640: 610-618, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36878078

RESUMEN

The multiple requirements of optical transmittance, high shielding effectiveness, and long-term stability bring considerable challenge to electromagnetic interference (EMI) shielding in the fields of visualization windows, transparent optoelectronic devices, and aerospace equipment. To this end, attempts were hereby made, and based on high-quality single crystal graphene (SCG)/hexagonal boron nitride (h-BN) heterostructure, transparent EMI shielding films with weak secondary reflection, nanoscale ultra-thin thickness and long-term stability were finally realized by a composite structure. In this novel structure, SCG was adopted as the absorption layer, while sliver nanowires (Ag NWs) film acted as the reflection layer. These two layers were placed on different sides of the quartz to form a cavity, which achieved the dual coupling effect, so that the electromagnetic wave was reflected multiple times to form more absorption loss. Among the absorption dominant shielding films, the composite structure in this work demonstrated stronger shielding effectiveness of 28.76 dB with a higher light transmittance of 80.6%. In addition, under the protection of the outermost h-BN layer, the decline range of the shielding performance of the shielding film was extensively reduced after 30 days of exposure to air and maintained long-term stability. Overall, this study provides an outstanding EMI shielding material with great potential for practical applications in electronic devices protection.

10.
ACS Appl Mater Interfaces ; 14(15): 17727-17738, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35389630

RESUMEN

The demand for optically transparent microwave absorbers has attracted increasing interest among researchers in recent years. However, integrating broadband microwave absorption and high optical transparency remains a challenge. This report demonstrates a scheme for broadband microwave absorbers, featuring a 90% absorption bandwidth of 10 GHz covering a frequency range of 25.2-35.2 GHz and high compatibility with good optical transparency in a wide band from the visible to infrared. The absorber is based on a Jaumann structure composed of two graphene sheets sandwiched by dielectric and backed by an arrayed-metallic-rings sheet. Guided by derived formulas, this absorber exhibits complete absorption if the sheet resistance of graphene is close to 500 Ω sq-1. The bandwidth and center frequency of the absorption spectra can be readily tuned simply via changes in the thickness of the dielectric between the graphene films and arrayed-metallic-rings sheet. Moreover, the absorber is insensitive to the incident angle of radiation and can achieve broadband and near-unity absorption even at oblique incidence. The graphene-based absorber proposed herein provides a viable solution for effectively integrating broadband and near-unity microwave absorption with high optical transparency, thereby enabling widespread applications in optics, communications, and solar cells.

11.
Phys Rev E ; 104(5-1): 054122, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34942708

RESUMEN

Recently, it has been shown that in graded systems, thermal rectification (TR) effect may remain in the thermodynamical limit. Here, by taking the one-dimensional rotor lattice as an illustrating model, we investigate how the graded structure may affect the TR efficiency. In particular, we consider the case where the interaction is assigned with nonlinear polynomial functions. It is found that TR is robust in the thermodynamical limit and meanwhile its efficiency may considerably depend on the details of the graded structure. This finding suggests that it is possible to enhance the TR effect by taking into account the nonlinear graded structure even in large systems.

12.
Opt Express ; 29(22): 36430-36441, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34809053

RESUMEN

The past few years have witnessed the great success of artificial metamaterials with effective medium parameters to control electromagnetic waves. Herein, we present a scheme to achieve broadband microwave low specular reflection with uniform backward scattering by using a coding metasurface, which is composed of a rational layout of subwavelength coding elements, via an optimization method. We propose coding elements with high transparency based on ultrathin doped silver, which are capable of generating large phase differences (∼180°) over a wide frequency range by designing geometric structures. The electromagnetic diffusion of the coding metasurface originates from the destructive interference of the reflected waves in various directions. Numerical simulations and experimental results demonstrate that low reflection is achieved from 12 to 18 GHz with a high angular insensitivity of up to ±40° for both transverse electric and transverse magnetic polarizations. Furthermore, the excellent visible transparency of the encoding metasurface is promising for various microwave and optical applications such as electronic surveillance, electromagnetic interference shielding, and radar cross-section reduction.

13.
Adv Sci (Weinh) ; 6(19): 1901320, 2019 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-31592425

RESUMEN

The demand for high-performance absorbers in the microwave frequencies, which can reduce undesirable radiation that interferes with electronic system operation, has attracted increasing interest in recent years. However, most devices implemented so far are opaque, limiting their use in optical applications that require high visible transparency. Here, a scheme is demonstrated for microwave absorbers featuring high transparency in the visible range, near-unity absorption (≈99.5% absorption at 13.75 GHz with 3.6 GHz effective bandwidth) in the Ku-band, and hence excellent electromagnetic interference shielding performance (≈26 dB). The device is based on an asymmetric Fabry-Pérot cavity, which incorporates a monolayer graphene and a transparent ultrathin (8 nm) doped silver layer as absorber and reflector, and fused silica as the middle dielectric layer. Guided by derived formulism, this asymmetric cavity is demonstrated with microwaves near-perfectly and exclusively absorbs in the ultrathin graphene film. The peak absorption frequency of the cavity can be readily tuned by simply changing the thickness of the dielectric spacer. The approach provides a viable solution for a new type of microwave absorber with high visible transmittance, paving the way towards applications in the area of optics.

14.
Opt Lett ; 44(5): 1253-1256, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30821761

RESUMEN

In this work, we proposed an optically transparent double-layer frequency-selective surface (FSS) based on interlaced multiring metallic mesh. By changing the large metal area of a conventional double-layer FSS into triangular-orthogonal distributed basic rings and nested rotated subrings, we achieved an FSS with high optical transmittance and low normalized high-order diffraction intensity while maintaining a flat passband and steep transition band. The results showed that our fabricated FSS had a normalized visible transmittance of 90.31%, stable filtering passband of ∼33.9 GHz, 3 dB bandwidth of 13.4 GHz, and uniform diffraction distribution, which are favorable characteristics for optically transparent FSS applications.

15.
ACS Appl Mater Interfaces ; 11(12): 11782-11791, 2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30817123

RESUMEN

Reducing electromagnetic interference (EMI) across a broad radio frequency band is crucial to eliminate adverse effects of increasingly complex electromagnetic environment. Current shielding materials or methods suffer from trade-offs between optical transmittance and EMI shielding capability. Moreover, poor mechanical flexibility and fabrication complexity significantly limit their further applications in flexible electronics. In this work, an ultrathin (8 nm) and continuous doped silver (Ag) film was obtained by introducing a small amount of copper during the sputtering deposition of Ag and investigated as transparent EMI shielding components. The electromagnetic Ag shielding (EMAGS) film was realized in the form of conductive dielectric-metal-dielectric design to relieve the electro-optical trade-offs, which transmits 96.5% visible light relative to the substrate and shows an excellent average EMI shielding effectiveness (SE) of ∼26 dB, over a broad bandwidth of 32 GHz, covering the entire X, Ku, Ka, and K bands. EMI SE >30 dB was obtained by simply stacking two layers of EMAGS films together and can be further improved up to 50 dB by separating two layers with a quarter-wavelength space. The flexible EMAGS film shows a stable EMI shielding performance under repeated mechanical bending. In addition, large-area EMAGS films were demonstrated by a roll-to-roll sputtering system, proving the feasibility for mass production. The high-performance EMAGS film holds great potential for various applications in wearable electronics, healthcare devices, and electronic safety areas.

16.
Rev Sci Instrum ; 89(6): 065105, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29960576

RESUMEN

In this paper, a two-dimensional (2-D) planar encoder based on two parallel gratings, which includes a scanning grating and scale grating, is presented. The scanning grating is a combined transmission rectangular grating comprised of a 2-D grating located at the center and two one-dimensional (1-D) gratings located at the sides. The grating lines of the two 1-D gratings are perpendicular to each other and parallel with the 2-D grating lines. The scale grating is a 2-D reflective-type rectangular grating placed in parallel with the scanning grating, and there is an angular difference of 45° between the grating lines of the two 2-D gratings. With the special structural design of the scanning grating, the encoder can measure the 2-D displacement in the grating plane simultaneously, and the measured interference signals in the two directions are uncoupled. Moreover, by utilizing the scanning grating to modulate the phase of the interference signals instead of the prisms, the structure of the encoder is compact. Experiments were implemented, and the results demonstrate the validity of the 2-D planar grating encoder.

17.
ACS Appl Mater Interfaces ; 9(39): 34221-34229, 2017 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-28892351

RESUMEN

Conducting graphene-based hybrids have attracted considerable attention in recent years for their scientific and technological significance in many applications. In this work, conductive graphene hybrid films, consisting of a metallic network fully encapsulated between monolayer graphene and quartz-glass substrate, were fabricated and characterized for their electromagnetic interference shielding capabilities. Experimental results show that by integration with a metallic network the sheet resistance of graphene was significantly suppressed from 813.27 to 5.53 Ω/sq with an optical transmittance at 91%. Consequently, the microwave shielding effectiveness (SE) exceeded 23.60 dB at the Ku-band and 13.48 dB at the Ka-band. The maximum SE value was 28.91 dB at 12 GHz. Compared with the SE of pristine monolayer graphene (3.46 dB), the SE of graphene hybrid film was enhanced by 25.45 dB (99.7% energy attenuation). At 94% optical transmittance, the sheet resistance was 20.67 Ω/sq and the maximum SE value was 20.86 dB at 12 GHz. Our results show that hybrid graphene films incorporate both high conductivity and superior electromagnetic shielding comparable to existing ITO shielding modalities. The combination of high conductivity and shielding along with the materials' earth-abundant nature, and facile large-scale fabrication, make these graphene hybrid films highly attractive for transparent EMI shielding.

18.
Opt Lett ; 42(8): 1620-1623, 2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-28409813

RESUMEN

We report a nested multi-ring array metallic mesh (NMA-MM) that shows a highly uniform diffraction pattern theoretically and experimentally. Then a high-performance transparent electromagnetic interference (EMI) shielding structure is constituted by the double-layer interlaced NMA-MMs separated by transparent quartz-glass substrate. Experimental results show that double-layer interlaced NMA-MM structure exhibits a shielding effectiveness (SE) of over 27 dB in the Ku-band, with a maximal SE of 37 dB at 12 GHz, normalized optical transmittance of 90%, and minimal image quality degradation due to the interlaced arrangement. It thus shows great potential for practical applications in transparent EMI shielding devices.

19.
Opt Express ; 24(23): 26109-26118, 2016 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-27857348

RESUMEN

An optically transparent frequency selective surface (FSS) based on a nested ring metallic mesh is proposed, whose diffraction distribution is uniform and normalized higher-order diffraction intensity is lower than that of an existing transparent FSS based on metallic meshes. Compared with non-meshed FSSs, the proposed FSS has a remarkably higher optical transmittance, lower -3 dB bandwidth, and higher maximum transmittance in the microwave band. Experimental results indicate that the FSS sample achieved a normalized visible transmittance of 94.84%, uniform diffraction distribution, and stable filtering passband around 31.00 GHz simultaneously, which are attractive properties for transparent FSS applications.

20.
Opt Express ; 24(20): 22989-23000, 2016 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-27828364

RESUMEN

We present an optical transmission model and a fast shielding effectiveness (SE) evaluation method for the inductive mesh comprising metallic rings with rotated sub-ring arrays, which can be extended for designing and optimizing other ring-based mesh structures. The theoretical analysis and experimental verification show that the established model and method are valid. A Ku-band SE >17 dB (98% energy attenuation) is observed for a triangular ring mesh with rotated sub-rings, and a normalized visible transmittance >95% is obtained with an ultra-uniform diffraction pattern, thus indicating the possibilities of our approach for high-optical-transmittance, strong-SE, reduced-image-degradation shielding applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...