Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39297229

RESUMEN

Flutriafol, a globally utilized triazole fungicide in agriculture, is typically applied as a racemic mixture, but its enantiomers differ in bioactivity and environmental impact. The synthesis of flutriafol enantiomers is critically dependent on chiral precursors: 2,2-bisaryl-substituted oxirane [(2-fluorophenyl)-2-(4-fluorophenyl)oxirane, 1a] and 1,2-diol [1-(2-fluorophenyl)-1-(4-fluorophenyl)ethane-1,2-diol, 1b]. Here, we engineered a Rhodotorula paludigensis epoxide hydrolase (RpEH), obtaining mutant Escherichia coli/RpehH336W/L360F with a 6.4-fold enhanced enantiomeric ratio (E) from 5.5 to 35.4. This enabled a gram-scale resolution of rac-1a by E. coli/RpehH336W/L360F, producing (S)-1a (98.2% ees) and (R)-1b (75.0% eep) with 44.3 and 55.7% analytical yields, respectively. As follows, chiral (S)-flutriafol (98.2% ee) and (R)-flutriafol (75.0% ee) were easily synthesized by a one-step chemocatalytic process from (S)-1a and a two-step chemocatalytic process from (R)-1b, respectively. This chemoenzymatic approach offers a superior alternative for the asymmetric synthesis of flutriafol enantiomers. Furthermore, molecular dynamics simulations revealed insight into the enantioselectivity improvement of RpEH toward bulky 2,2-bisaryl-substituted oxirane 1a.

2.
J Agric Food Chem ; 72(18): 10428-10438, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38660720

RESUMEN

Tebuconazole is a chiral triazole fungicide used globally in agriculture as a racemic mixture, but its enantiomers exhibit significant enantioselective dissimilarities in bioactivity and environmental behaviors. The steric hindrance caused by the tert-butyl group makes it a great challenge to synthesize tebuconazole enantiomers. Here, we designed a simple chemoenzymatic approach for the asymmetric synthesis of (R)-tebuconazole, which includes the biocatalytic resolution of racemic epoxy-precursor (2-tert-butyl-2-[2-(4-chlorophenyl)ethyl] oxirane, rac-1a) by Escherichia coli/Rpeh whole cells expressed epoxide hydrolase from Rhodotorula paludigensis (RpEH), followed by a one-step chemocatalytic synthesis of (R)-tebuconazole. It was observed that (S)-1a was preferentially hydrolyzed by E. coli/Rpeh, whereas (R)-1a was retained with a specific activity of 103.8 U/g wet cells and a moderate enantiomeric ratio (E value) of 13.4, which was remarkably improved to 43.8 after optimizing the reaction conditions. Additionally, a gram-scale resolution of 200 mM rac-1a was performed using 150 mg/mL E. coli/Rpeh wet cells, resulting in the retention of (R)-1a in a 97.0% ees, a 42.5% yields, and a 40.5 g/L/d space-time yield. Subsequently, the synthesis of highly optical purity (R)-tebuconazole (>99% ee) was easily achieved through the chemocatalytic ring-opening of the epoxy-precursor (R)-1a with 1,2,4-triazole. To elucidate insight into the enantioselectivity, molecular docking simulations revealed that the unique L-shaped substrate-binding pocket of RpEH plays a crucial role in the enantioselective recognition of bulky 2,2-disubstituted oxirane 1a.


Asunto(s)
Biocatálisis , Epóxido Hidrolasas , Proteínas Fúngicas , Fungicidas Industriales , Rhodotorula , Triazoles , Rhodotorula/enzimología , Rhodotorula/química , Rhodotorula/metabolismo , Triazoles/química , Triazoles/metabolismo , Fungicidas Industriales/química , Fungicidas Industriales/metabolismo , Fungicidas Industriales/síntesis química , Epóxido Hidrolasas/metabolismo , Epóxido Hidrolasas/química , Estereoisomerismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Simulación del Acoplamiento Molecular , Escherichia coli/enzimología , Escherichia coli/metabolismo
3.
J Agric Food Chem ; 69(2): 704-716, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33406824

RESUMEN

Arthrobacter simplex exhibits excellent Δ1-dehydrogenation ability, but the acquisition of the desirable strain is limited due to lacking of comprehensive genetic manipulation. Herein, a promoter collection for fine-tuning gene expression was achieved. Next, the expression level was enhanced and directed evolution of the global transcriptional factor (IrrE) was applied to enhance cell viability in systems containing more substrate and ethanol, thus contributing to higher production. IrrE promotes a stronger antioxidant defense system, more energy generation, and changed signal transduction. Using a stronger promoter, the enzyme activities were boosted but their positive effects on biotransformation performance were inferior to cell stress tolerance when exposed to challenging systems. Finally, an optimal strain was created by collectively reinforcing cell stress tolerance and catalytic enzyme activity, achieving a yield 261.8% higher relative to the initial situation. Our study provided effective methods for steroid-transforming strains with high efficiency.


Asunto(s)
Actinobacteria/enzimología , Proteínas Bacterianas/metabolismo , Actinobacteria/genética , Actinobacteria/crecimiento & desarrollo , Actinobacteria/metabolismo , Proteínas Bacterianas/genética , Biotransformación , Etanol/metabolismo , Regulación Bacteriana de la Expresión Génica , Viabilidad Microbiana , Regiones Promotoras Genéticas , Esteroides/metabolismo , Estrés Fisiológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA