Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.744
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38980196

RESUMEN

OBJECTIVES: To explore the safety and efficacy of a graphene oxide-loaded rapamycin-coated airway stent (GO@RAPA-SEMS) in a rabbit model. METHODS: The dip coating method was used to develop GO@RAPA-SEMS and PLGA-loaded rapamycin coating airway stents (PLGA@RAPA-SEMS). The surface structure was evaluated by SEM. The in vitro drug release profiles of the two stents were explored and compared. In the animal study, a total of 45 rabbits were randomly divided into three groups and underwent 3 kinds of stent placement. Computed tomography was performed to evaluate the degree of stenosis at 1, 2, and 3 months poststent surgery. Five rabbits in each group were sacrificed after CT. The stented trachea and blood were collected for further pathological analysis and laboratory testing. RESULTS: The in vitro drug release study revealed that GO@RAPA-SEMS exhibited sudden release on the first day and maintained a certain release rate on the 14th day. The PLGA@RAPA-SEMS exhibited a longer sustained release time. All 45 rabbits underwent successful stent placement. Pathological results indicated that the granulation tissue thickness in the GO@RAPA-SEMS group was less than that in the PLGA@RAPA-SEMS group. The TUNEL and HIF-1α staining results support that the granulation inhibition effect in the GO@RAPA-SEMS group was greater than that in the PLGA@RAPA-SEMS group. CONCLUSIONS: GO@RAPA-SEMS effectively inhibited stent-related granulation tissue hyperplasia.

2.
Curr Opin Rheumatol ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39007238

RESUMEN

PURPOSE OF REVIEW: Antimelanoma differentiation antigen 5-dermatomyositis (MDA5-DM) is a complex and serious systemic autoimmune disease that primarily affects the skin and lungs. In this review, we aimed to provide new insights into the clinical features, pathogenesis, and practical management approach for this disease. RECENT FINDINGS: Although lung lesions are prominent in most patients with MDA5-DM, they are now recognized as heterogeneous diseases. Peripheral blood lymphocyte count can serve as a simple and reliable laboratory parameter for categorizing MDA5-DM into three subgroups: mild, medium, and severe. Recent studies have implicated viral infection, genetic factors, autoimmunity against MDA5, multiple immune cells, and interferons as significant contributors to MDA5-DM pathogenesis. In addition to traditional treatments with glucocorticoids and immunosuppressants, many new approaches, including new biologics and targeted agents, have been explored. Additionally, infection is a common complication of MDA5-DM, and prophylaxis or treatment of the infection is as important as treating the primary disease. SUMMARY: Knowledge of clinical characteristics and pathogenesis of MDA5-DM has grown in recent years. Although many new therapeutic approaches have been explored, further studies are required to confirm their efficacy.

3.
Sci Rep ; 14(1): 15956, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987349

RESUMEN

With global warming, heat stress has become an important factor that seriously affects crop yield and quality. Therefore, understanding plant responses to heat stress is important for agricultural practice, but the molecular mechanism of high-temperature tolerance in garlic remains unclear. In this study, 'Xusuan No. 6' was used as the experimental material. After heat stress for 0 (CK), 2 and 24 h, transcriptome sequencing was used to screen metabolic pathways and differentially expressed genes (DEGs) closely related to heat stress and was further verified by quantitative real-time polymerase chain reaction (qRT-PCR). A total of 86,110 unigenes obtained from the raw transcriptome sequencing data were spliced. After 2 h of heat treatment, the expression levels of 8898 genes increased, and 3829 genes were decreased in leaves. After 24 h, the expression levels of 7167 genes were upregulated, and 3176 genes were downregulated. Gene Ontology enrichment analysis showed that DEGs were mainly enriched in seven categories: cellular processes, metabolic processes, binging, catalytic activity, cellular anatomical entity and protein-containing complex response to stimulus. Kyoto Encyclopedia of Genes and Genomes pathway enrichment showed that DEGs are involved in protein processing in the endoplasmic reticulum, plant hormone signal transduction, phenylpropanoid biosynthesis, and photosynthetic antenna proteins. Six genes were selected and further verified by qRT-PCR. In this study, the full-length transcriptome of garlic was constructed, and the regulatory genes related to the heat resistance of garlic were studied. Taken together, these findings can provide a theoretical basis for the cloning of heat resistance genes in garlic and for the analysis of heat resistance mechanisms.


Asunto(s)
Ajo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico , Transcriptoma , Ajo/genética , Ajo/metabolismo , Respuesta al Choque Térmico/genética , Ontología de Genes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Plants (Basel) ; 13(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38999579

RESUMEN

Sugarcane, a vital cash crop, contributes significantly to the world's sugar supply and raw materials for biofuel production, playing a significant role in the global sugar industry. However, sustainable productivity is severely hampered by biotic and abiotic stressors. Genetic engineering has been used to transfer useful genes into sugarcane plants to improve desirable traits and has emerged as a basic and applied research method to maintain growth and productivity under different adverse environmental conditions. However, the use of transgenic approaches remains contentious and requires rigorous experimental methods to address biosafety challenges. Clustered regularly interspaced short palindromic repeat (CRISPR) mediated genome editing technology is growing rapidly and may revolutionize sugarcane production. This review aims to explore innovative genetic engineering techniques and their successful application in developing sugarcane cultivars with enhanced resistance to biotic and abiotic stresses to produce superior sugarcane cultivars.

5.
Sci Rep ; 14(1): 15827, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982109

RESUMEN

The influence of liver fibrosis on the rate of liver regeneration and complications following ALPPS has yet to be fully understood. This study aimed to scrutinize the effects of liver fibrosis on the postoperative complications, and prognosis subsequent to ALPPS. Clinical data were collected from patients with primary liver cancer who underwent ALPPS at Peking Union Medical College Hospital between May 2014 and October 2022. The degree of liver fibrosis was assessed using haematoxylin-eosin staining and Sirius red staining. This study encompassed thirty patients who underwent ALPPS for primary liver cancer, and there were 23 patients with hepatocellular carcinoma, 5 with cholangiocarcinoma, and 2 with combined hepatocellular-cholangiocarcinoma. The impact of severe liver fibrosis on the rate of liver regeneration was not statistically significant (P = 0.892). All patients with severe complications belonged to the severe liver fibrosis group. Severe liver fibrosis exhibited a significant association with 90 days mortality (P = 0.014) and overall survival (P = 0.012). Severe liver fibrosis emerges as a crucial risk factor for liver failure and perioperative mortality following the second step of ALPPS. Preoperative liver function impairment is an important predictive factor for postoperative liver failure.


Asunto(s)
Hepatectomía , Cirrosis Hepática , Fallo Hepático , Neoplasias Hepáticas , Humanos , Masculino , Femenino , Cirrosis Hepática/cirugía , Cirrosis Hepática/patología , Cirrosis Hepática/complicaciones , Neoplasias Hepáticas/cirugía , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/mortalidad , Persona de Mediana Edad , Fallo Hepático/etiología , Fallo Hepático/patología , Hepatectomía/efectos adversos , Anciano , Pronóstico , Complicaciones Posoperatorias/etiología , Carcinoma Hepatocelular/cirugía , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/mortalidad , Vena Porta/patología , Vena Porta/cirugía , Colangiocarcinoma/cirugía , Colangiocarcinoma/patología , Colangiocarcinoma/mortalidad , Adulto , Regeneración Hepática , Factores de Riesgo , Estudios Retrospectivos , Resultado del Tratamiento , Ligadura
6.
Chem Commun (Camb) ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967500

RESUMEN

The shift from traditional bulky electronics to smart wearable devices represents a crucial trend in technological advancement. In recent years, the focus has intensified on harnessing thermal and mechanical energy from human activities to power small wearable electronics. This vision has attracted considerable attention from researchers, with an emphasis on the development of suitable materials that can efficiently convert human body energy into usable electrical form. Metal-organic frameworks (MOFs), with their unique tunable structures, large surface areas, and high porosity, emerge as a promising material category for human body energy harvesting due to their ability to be precisely engineered at the molecular level, which allows for the optimization of their properties to suit specific energy harvesting needs. This article explores the progressive development of MOF materials, highlighting their potential in the realm of self-power devices for wearable applications. It first introduces the typical energy harvesting routes that are particularly suitable for harvesting human body energy, including thermoelectric, triboelectric, and piezoelectric techniques. Then, it delves into various research advances that have demonstrated the efficacy of MOFs in capturing and converting body-generated energy into electrical energy, emphasizing on the conceptual design, device fabrication, and applications in medical health monitoring, human-computer interaction, and motion monitoring. Furthermore, it discusses potential future directions for research in MOF-based self-powered devices and outlines perspectives that could drive breakthroughs in the efficiency and practicality of these devices.

7.
Int J Biol Macromol ; 275(Pt 1): 133350, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960255

RESUMEN

Saccharide mapping was a promising scheme to unveil the mystery of polysaccharide structure by analysis of the fragments generated from polysaccharide decomposition process. However, saccharide mapping was not widely applied in the polysaccharide analysis for lacking of systematic introduction. In this review, a detailed description of the establishment process of saccharide mapping, the pros and cons of downstream technologies, an overview of the application of saccharide mapping, and practical strategies were summarized. With the updating of the available downstream technologies, saccharide mapping had been expanding its scope of application to various kinds of polysaccharides. The process of saccharide mapping analysis included polysaccharides degradation and hydrolysates analysis, and the degradation process was no longer limited to acid hydrolysis. Some downstream technologies were convenient for rapid qualitative analysis, while others could achieve quantitative analysis. For the more detailed structure information could be provided by saccharide mapping, it was possible to improve the quality control of polysaccharides during preparation and application. This review filled the blank of basic information about saccharide mapping and was helpful for the establishment of a professional workflow for the saccharide mapping application to promote the deep study of polysaccharide structure.

8.
Ren Fail ; 46(2): 2373279, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38967136

RESUMEN

BACKGROUND AND OBJECTIVE: Chronic kidney disease (CKD) is a global health concern that is frequently associated with hypertension. Inflammation is an important factor in the development of both illnesses. The Dietary Inflammation Index (DII) has evolved as a way to measure how much a diet can cause inflammation, which may impact CKD, especially in hypertensive persons. The study's goal is to investigate the link between DII and the occurrence of CKD in hypertensive individuals. METHODS: This study examined data from 22940 hypertensive patients from 1999 to 2018 of the National Health and Nutrition Examination Survey (NHANES). The DII was computed using 28 dietary components. CKD was diagnosed based on the estimated glomerular filtration rate and urine albumin-to-creatinine ratio. The link between DII and CKD was explored using sampling-weighted logistic regression and restricted cubic splines. RESULTS: Higher DII scores were shown to be strongly related with an increased risk of CKD. In the fully adjusted model, this connection remained consistent across demographic and clinical categories. CONCLUSIONS: The study found a strong association between a pro-inflammatory diet and an elevated risk of CKD in hypertensive individuals, emphasizing the potential of dietary changes in CKD management.


Asunto(s)
Dieta , Hipertensión , Inflamación , Encuestas Nutricionales , Insuficiencia Renal Crónica , Humanos , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/complicaciones , Masculino , Femenino , Hipertensión/epidemiología , Hipertensión/complicaciones , Persona de Mediana Edad , Inflamación/epidemiología , Prevalencia , Dieta/efectos adversos , Tasa de Filtración Glomerular , Adulto , Factores de Riesgo , Anciano , Estudios Transversales , Estados Unidos/epidemiología , Modelos Logísticos
9.
Sci Rep ; 14(1): 15667, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977741

RESUMEN

The microreactor with two types of immobilized enzymes, exhibiting excellent orthogonal performance, represents an effective approach to counteract the reduced digestion efficiency resulting from the absence of a single enzyme cleavage site, thereby impacting protein identification. In this study, we developed a hydrophilic dual-enzyme microreactor characterized by rapid mass transfer and superior enzymatic activity. Initially, we selected KIT-6 molecular sieve as the carrier for the dual-IMER due to its three-dimensional network pore structure. Modification involved co-deposition of polyethyleneimine (PEI) and acrylamide (AM) as amine donors, along with dopamine to enhance material hydrophilicity. Remaining amino and double bond functional groups facilitated stepwise immobilization of trypsin and Glu-C. Digestion times for bovine serum albumin (BSA) and bovine hemoglobin (BHb) on the dual-IMER were significantly reduced compared to solution-based digestion (1 min vs. 36 h), resulting in improved sequence coverage (91.30% vs. 82.7% for BSA; 90.24% vs. 89.20% for BHb). Additionally, the dual-IMER demonstrated excellent durability, retaining 96.08% relative activity after 29 reuse cycles. Enhanced protein digestion efficiency can be attributed to several factors: (1) KIT-6's large specific surface area, enabling higher enzyme loading capacity; (2) Its three-dimensional network pore structure, facilitating faster mass transfer and substance diffusion; (3) Orthogonality of trypsin and Glu-C enzyme cleavage sites; (4) The spatial effect introduced by the chain structure of PEI and glutaraldehyde's spacing arm, reducing spatial hindrance and enhancing enzyme-substrate interactions; (5) Mild and stable enzyme immobilization. The KIT-6-based dual-IMER offers a promising technical tool for protein digestion, while the PDA/PEI/AM-KIT-6 platform holds potential for immobilizing other proteins or active substances.


Asunto(s)
Acrilamida , Dopamina , Enzimas Inmovilizadas , Polietileneimina , Albúmina Sérica Bovina , Tripsina , Polietileneimina/química , Dopamina/química , Dopamina/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Acrilamida/química , Tripsina/química , Tripsina/metabolismo , Animales , Bovinos , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Porosidad , Interacciones Hidrofóbicas e Hidrofílicas , Hemoglobinas/química , Hemoglobinas/metabolismo , Proteolisis
11.
Animals (Basel) ; 14(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38929378

RESUMEN

Stearoyl-CoA desaturase-1 (SCD1) is a key enzyme in the biosynthesis of monounsaturated fatty acids and is considered a candidate gene for improving milk and meat quality traits. Sanger sequencing was employed to investigate the genetic polymorphism of the fifth exon and intron of bovine SCD1, revealing four SNPs, g.21272246 A>G, g.21272306 T>C, g.21272422 C>T, and g.21272529 A>G. Further variance analysis and multiple comparisons were conducted to examine the relationship between variation sites and economic traits in Chinese Simmental cattle, as well as milk production traits in Holstein cows. The findings revealed these four loci exhibited significant associations with carcass traits (carcass weight, carcass length, backfat thickness, and waist meat thickness), meat quality (pH value, rib eye area, and marbling score), adipogenic traits (fat score and carcass fat coverage rate), and fatty acid composition (linoleic acid and α-linolenic acid). Furthermore, these loci were additionally found to be significantly associated with average milk yield and milk fat content in cows. In addition, a haplotype analysis of combinations of SNPs showed that H2H3 has a significant association with adipogenic traits and H2H2 was associated with higher levels of linoleic acid and α-linolenic acid than the other combinations. These results suggest that the four SNPs are expected to be prospective genetic markers for the above economic traits. In addition, the function of SNPs in exon 5 of SCD1 on gene expression and protein structure needs to be explored in the future.

12.
Toxics ; 12(6)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38922070

RESUMEN

The toxic metal (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) pollution in 250 agricultural soil samples representing the urban area of Jiaxing was studied to investigate the temporal and spatial variations. Compared to the early 1990s, the pollution level has increased. Industry and urbanization were the main factors causing toxic metal pollution on temporal variation, especially the use of feed containing toxic metals. The soil types and crop cultivation methods are the main factors causing toxic metal pollution on spatial variation. Although the single-factor pollution indices of all the toxic metals were within the safe limits, as per the National Soil Environmental Quality Standard (risk screening value), if the background values of soil elements in Jiaxing City are used as the standard, the pollution index of all the elements surveyed exceeds 1.0, reaching a level of mild pollution. The soil samples investigated were heavily contaminated with toxic metal compounds, and their levels increased over time. This situation poses potential ecological and health risks.

13.
J Orthop Res ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38860529

RESUMEN

Intra-articular corticosteroid injections, such as triamcinolone acetonide (TA), are commonly used by clinicians to manage joint synovial inflammation. However, due to conflicting evidence in literature, there is a fear among clinicians that the injections may be harmful to otherwise healthy cartilage in young patients. The purpose of this study was to evaluate the effects of TA on young, healthy chondrocytes. Articular cartilage samples were harvested from bovine knee joints (1-2 months old). In both healthy and inflammatory (interleukin-1ß) challenged cartilage, samples were treated with TA at doses ranging from 1 nM to 200 µM. Following a short- (2 days) or long-term (10-14 days) treatment, chondrocyte viability, proliferation, and extracellular matrix (ECM) synthesis and degradation were evaluated with a click chemistry-based technique. Chondrocyte viability, proliferation, and anabolic activity were all minimally affected by short-term and long-term TA treatment. After both acute and sustained inflammatory challenges, TA reduced the catabolic activities in cartilage, reducing nascent glycosaminoglycan loss and maintaining cartilage mechanical properties. Overall, at physiologically relevant doses, TA had minimal negative impact on chondrocytes when maintained within their native ECM. Clinical significance: The findings provide new insight for current clinical practices concerning the use of TA in intra-articular injections, especially in young patients, and established a foundation for future investigations into the impact of corticosteroids on joint homeostasis.

14.
Microbiome ; 12(1): 114, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38915127

RESUMEN

BACKGROUND: Mediterranean diet rich in polyphenolic compounds holds great promise to prevent and alleviate multiple sclerosis (MS), a central nervous system autoimmune disease associated with gut microbiome dysbiosis. Health-promoting effects of natural polyphenols with low bioavailability could be attributed to gut microbiota reconstruction. However, its underlying mechanism of action remains elusive, resulting in rare therapies have proposed for polyphenol-targeted modulation of gut microbiota for the treatment of MS. RESULTS: We found that oral ellagic acid (EA), a natural polyphenol rich in the Mediterranean diet, effectively halted the progression of experimental autoimmune encephalomyelitis (EAE), the animal model of MS, via regulating a microbiota-metabolites-immunity axis. EA remodeled the gut microbiome composition and particularly increased the relative abundances of short-chain fatty acids -producing bacteria like Alloprevotella. Propionate (C3) was most significantly up-regulated by EA, and integrative modeling revealed a strong negative correlation between Alloprevotella or C3 and the pathological symptoms of EAE. Gut microbiota depletion negated the alleviating effects of EA on EAE, whereas oral administration of Alloprevotella rava mimicked the beneficial effects of EA on EAE. Moreover, EA directly promoted Alloprevotella rava (DSM 22548) growth and C3 production in vitro. The cell-free supernatants of Alloprevotella rava co-culture with EA suppressed Th17 differentiation by modulating acetylation in cell models. C3 can alleviate EAE development, and the mechanism may be through inhibiting HDAC activity and up-regulating acetylation thereby reducing inflammatory cytokines secreted by pathogenic Th17 cells. CONCLUSIONS: Our study identifies EA as a novel and potentially effective prebiotic for improving MS and other autoimmune diseases via the microbiota-metabolites-immunity axis. Video Abstract.


Asunto(s)
Ácido Elágico , Encefalomielitis Autoinmune Experimental , Microbioma Gastrointestinal , Esclerosis Múltiple , Propionatos , Ácido Elágico/farmacología , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/microbiología , Propionatos/metabolismo , Ratones , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/microbiología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Femenino , Autoinmunidad/efectos de los fármacos , Disbiosis/microbiología , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/inmunología , Humanos , Administración Oral
15.
JMIR Form Res ; 8: e55013, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941609

RESUMEN

BACKGROUND: In recent years, a range of novel smartphone-derived data streams about human mobility have become available on a near-real-time basis. These data have been used, for example, to perform traffic forecasting and epidemic modeling. During the COVID-19 pandemic in particular, human travel behavior has been considered a key component of epidemiological modeling to provide more reliable estimates about the volumes of the pandemic's importation and transmission routes, or to identify hot spots. However, nearly universally in the literature, the representativeness of these data, how they relate to the underlying real-world human mobility, has been overlooked. This disconnect between data and reality is especially relevant in the case of socially disadvantaged minorities. OBJECTIVE: The objective of this study is to illustrate the nonrepresentativeness of data on human mobility and the impact of this nonrepresentativeness on modeling dynamics of the epidemic. This study systematically evaluates how real-world travel flows differ from census-based estimations, especially in the case of socially disadvantaged minorities, such as older adults and women, and further measures biases introduced by this difference in epidemiological studies. METHODS: To understand the demographic composition of population movements, a nationwide mobility data set from 318 million mobile phone users in China from January 1 to February 29, 2020, was curated. Specifically, we quantified the disparity in the population composition between actual migrations and resident composition according to census data, and shows how this nonrepresentativeness impacts epidemiological modeling by constructing an age-structured SEIR (Susceptible-Exposed-Infected- Recovered) model of COVID-19 transmission. RESULTS: We found a significant difference in the demographic composition between those who travel and the overall population. In the population flows, 59% (n=20,067,526) of travelers are young and 36% (n=12,210,565) of them are middle-aged (P<.001), which is completely different from the overall adult population composition of China (where 36% of individuals are young and 40% of them are middle-aged). This difference would introduce a striking bias in epidemiological studies: the estimation of maximum daily infections differs nearly 3 times, and the peak time has a large gap of 46 days. CONCLUSIONS: The difference between actual migrations and resident composition strongly impacts outcomes of epidemiological forecasts, which typically assume that flows represent underlying demographics. Our findings imply that it is necessary to measure and quantify the inherent biases related to nonrepresentativeness for accurate epidemiological surveillance and forecasting.

16.
Biomacromolecules ; 25(7): 4329-4343, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38833553

RESUMEN

The development of nanotherapy targeting mitochondria to alleviate oxidative stress is a critical therapeutic strategy for vascular calcification (VC) in diabetes. In this study, we engineered mitochondria-targeted nanodrugs (T4O@TPP/PEG-PLGA) utilizing terpinen-4-ol (T4O) as a natural antioxidant and mitochondrial protector, PEG-PLGA as the nanocarrier, and triphenylphosphine (TPP) as the mitochondrial targeting ligand. In vitro assessments demonstrated enhanced cellular uptake of T4O@TPP/PEG-PLGA, with effective mitochondrial targeting. This nanodrug successfully reduced oxidative stress induced by high glucose levels in vascular smooth muscle cells. In vivo studies showed prolonged retention of the nanomaterials in the thoracic aorta for up to 24 h. Importantly, experiments in diabetic VC models underscored the potent antioxidant properties of T4O@TPP/PEG-PLGA, as evidenced by its ability to mitigate VC and restore mitochondrial morphology. These results suggest that these nanodrugs could be a promising strategy for managing diabetic VC.


Asunto(s)
Antioxidantes , Mitocondrias , Estrés Oxidativo , Calcificación Vascular , Animales , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Antioxidantes/farmacología , Antioxidantes/química , Calcificación Vascular/tratamiento farmacológico , Calcificación Vascular/metabolismo , Calcificación Vascular/patología , Estrés Oxidativo/efectos de los fármacos , Compuestos Organofosforados/química , Compuestos Organofosforados/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Nanopartículas/química , Ratones , Masculino , Polietilenglicoles/química , Ratas , Humanos , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo
17.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119768, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38838858

RESUMEN

The regulatory mechanism of the transcription factor GATA3 in the differentiation and maturation process of extravillous trophoblasts (EVT) in early pregnancy placenta, as well as its relevance to the occurrence of pregnancy disorders, remains poorly understood. This study leveraged single-cell RNA sequencing data from placental organoid models and placental tissue to explore the dynamic changes in GATA3 expression during EVT maturation. The expression pattern exhibited an initial upregulation followed by subsequent downregulation, with aberrant GATA3 localization observed in cases of recurrent miscarriage (RM). By identifying global targets regulated by GATA3 in primary placental EVT cells, JEG3, and HTR8/SVneo cell lines, this study offered insights into its regulatory mechanisms across different EVT cell models. Shared regulatory targets among these cell types and activation of trophoblast cell marker genes emphasized the importance of GATA3 in EVT differentiation and maturation. Knockdown of GATA3 in JEG3 cells led to repression of GATA3-induced epithelial-mesenchymal transition (EMT), as evidenced by changes in marker gene expression levels and enhanced migration ability. Additionally, interference with GATA3 accelerated cellular senescence, as indicated by reduced proliferation rates and increased activity levels for senescence-associated ß-galactosidase enzyme, along with elevated expression levels for senescence-associated genes. This study provides comprehensive insights into the dual role of GATA3 in regulating EMT and cellular senescence during EVT differentiation, shedding light on the dynamic changes in GATA3 expression in normal and pathological placental conditions.

18.
Heliyon ; 10(10): e30841, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38826728

RESUMEN

Background: Long noncoding RNAs (lncRNAs) have emerged as critical regulators of colorectal cancer (CRC) progression, but their roles and underlying mechanisms in colorectal cancer liver metastases (CRLMs) remain poorly understood. Methods: To explore the expression patterns and functions of lncRNAs in CRLMs, we analyzed the expression profiles of lncRNAs in CRC tissues using the TCGA database and examined the expression patterns of lncRNAs in matched normal, CRC, and CRLM tissues using clinical samples. We further investigated the biological roles of LINC02257 in CRLM using in vitro and in vivo assays, and verified its therapeutic potential in a mouse model of CRLM. Results: Our findings showed that LINC02257 was highly expressed in metastatic CRC tissues and its expression was negatively associated with overall survival. Functionally, LINC02257 promoted CRC cell growth, migration, metastasis, and inhibited cell apoptosis in vitro, and enhanced liver metastasis in vivo. Mechanistically, LINC02257 up-regulated phosphorylated c-Jun N-terminal kinase (JNK) to promote CRLM. Conclusions: Our study revealed that LINC02257 played a key role in the proliferation and metastasis of CRC cells through the LINC02257/JNK axis. Targeting this axis may represent a promising therapeutic strategy for the treatment of liver metastases in patients with CRC.

19.
Opt Express ; 32(8): 13224-13234, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38859298

RESUMEN

In this study, we propose a single-pixel computational imaging method based on a multi-input mutual supervision network (MIMSN). We input one-dimensional (1D) light intensity signals and two-dimensional (2D) random image signal into MIMSN, enabling the network to learn the correlation between the two signals and achieve information complementarity. The 2D signal provides spatial information to the reconstruction process, reducing the uncertainty of the reconstructed image. The mutual supervision of the reconstruction results for these two signals brings the reconstruction objective closer to the ground truth image. The 2D images generated by the MIMSN can be used as inputs for subsequent iterations, continuously merging prior information to ensure high-quality imaging at low sampling rates. The reconstruction network does not require pretraining, and 1D signals collected by a single-pixel detector serve as labels for the network, enabling high-quality image reconstruction in unfamiliar environments. Especially in scattering environments, it holds significant potential for applications.

20.
Insects ; 15(6)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38921122

RESUMEN

The eggs of the Mediterranean flour moth, Ephestia kuehniella, are frequently utilized as alternative diets and have demonstrated promising outcomes when consumed by various insects. Nonetheless, the specific reasons for their effectiveness remain unclear. In our study, we assessed the developmental performance of the ladybird Propylea japonica when fed E. kuehniella eggs, alongside 12 factitious prey or artificial diets. Our findings revealed that ladybirds fed E. kuehniella eggs displayed a performance comparable to those fed the natural prey Megoura crassicauda. Transcriptome profiling of larvae raised on E. kuehniella eggs and M. crassicauda revealed that genes upregulated in the former group were enriched in metabolic pathways associated with carbohydrates, lipids, and other essential nutrients. This suggests that E. kuehniella eggs may have a higher nutrient content compared to natural prey. Furthermore, a notable downregulation in the expression of immune effector genes, such as Attacin and Coleoptericin, was observed, which might be attributed to the lower microbial content in E. kuehniella eggs compared to M. crassicauda. We suggest that the difference between E. kuehniella eggs and M. crassicauda as food sources for P. japonica lies in their nutrient and microbial contents. These findings provide valuable insights for the advancement of innovative artificial breeding systems for natural enemies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...