Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
ACS Cent Sci ; 10(1): 87-103, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38292603

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no cure, and current treatment options are very limited. Previously, we performed a high-throughput screen to identify small molecules that inhibit protein aggregation caused by a mutation in the gene that encodes superoxide dismutase 1 (SOD1), which is responsible for about 25% of familial ALS. This resulted in three hit series of compounds that were optimized over several years to give three compounds that were highly active in a mutant SOD1 ALS model. Here we identify the target of two of the active compounds (6 and 7) with the use of photoaffinity labeling, chemical biology reporters, affinity purification, proteomic analysis, and fluorescent/cellular thermal shift assays. Evidence is provided to demonstrate that these two pyrazolone compounds directly interact with 14-3-3-E and 14-3-3-Q isoforms, which have chaperone activity and are known to interact with mutant SOD1G93A aggregates and become insoluble in the subcellular JUNQ compartment, leading to apoptosis. Because protein aggregation is the hallmark of all neurodegenerative diseases, knowledge of the target compounds that inhibit protein aggregation allows for the design of more effective molecules for the treatment of ALS and possibly other neurodegenerative diseases.

2.
J Biol Chem ; 298(7): 102069, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35623388

RESUMEN

Major depressive disorder is a critical public health problem with a lifetime prevalence of nearly 17% in the United States. One potential therapeutic target is the interaction between hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and an auxiliary subunit of the channel named tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b). HCN channels regulate neuronal excitability in the mammalian hippocampus, and recent work has established that antagonizing HCN function rescues cognitive impairment caused by chronic stress. Here, we utilize a high-throughput virtual screen to find small molecules capable of disrupting the TRIP8b-HCN interaction. We found that the hit compound NUCC-0200590 disrupts the TRIP8b-HCN interaction in vitro and in vivo. These results provide a compelling strategy for developing new small molecules capable of disrupting the TRIP8b-HCN interaction.


Asunto(s)
Trastorno Depresivo Mayor , Animales , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Trastorno Depresivo Mayor/metabolismo , Hipocampo/metabolismo , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Mamíferos/metabolismo , Neuronas/metabolismo
3.
Front Cell Dev Biol ; 10: 781558, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35252167

RESUMEN

Mitochondria are biosynthetic, bioenergetic, and signaling organelles with a critical role in cellular physiology. Dysfunctional mitochondria are associated with aging and underlie the cause of a wide range of diseases, from neurodegeneration to cancer. Through signaling, mitochondria regulate diverse biological outcomes. The maintenance of the mitochondrial membrane potential, for instance, is essential for proliferation, the release of mitochondrial reactive oxygen species, and oxygen sensing. The loss of mitochondrial membrane potential triggers pathways to clear damaged mitochondria and often results in cell death. In this study, we conducted a genome-wide positive selection CRISPR screen using a combination of mitochondrial inhibitors to uncover genes involved in sustaining a mitochondrial membrane potential, and therefore avoid cell death when the electron transport chain is impaired. Our screen identified genes involved in mitochondrial protein translation and ATP synthesis as essential for the induction of cell death when cells lose their mitochondrial membrane potential. This report intends to provide potential targets for the treatment of diseases associated with mitochondrial dysfunction.

4.
Sci Rep ; 11(1): 15830, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34349157

RESUMEN

The heart is capable of activating protective mechanisms in response to ischemic injury to support myocardial survival and performance. These mechanisms have been recognized primarily in the ischemic heart, involving paracrine signaling processes. Here, we report a distant cardioprotective mechanism involving hepatic cell mobilization to the ischemic myocardium in response to experimental myocardial ischemia-reperfusion (MI-R) injury. A parabiotic mouse model was generated by surgical skin-union of two mice and used to induce bilateral MI-R injury with unilateral hepatectomy, establishing concurrent gain- and loss-of-hepatic cell mobilization conditions. Hepatic cells, identified based on the cell-specific expression of enhanced YFP, were found in the ischemic myocardium of parabiotic mice with intact liver (0.2 ± 0.1%, 1.1 ± 0.3%, 2.7 ± 0.6, and 0.7 ± 0.4% at 1, 3, 5, and 10 days, respectively, in reference to the total cell nuclei), but not significantly in the ischemic myocardium of parabiotic mice with hepatectomy (0 ± 0%, 0.1 ± 0.1%, 0.3 ± 0.2%, and 0.08 ± 0.08% at the same time points). The mobilized hepatic cells were able to express and release trefoil factor 3 (TFF3), a protein mitigating MI-R injury as demonstrated in TFF3-/- mice (myocardium infarcts 17.6 ± 2.3%, 20.7 ± 2.6%, and 15.3 ± 3.8% at 1, 5, and 10 days, respectively) in reference to wildtype mice (11.7 ± 1.9%, 13.8 ± 2.3%, and 11.0 ± 1.8% at the same time points). These observations suggest that MI-R injury can induce hepatic cell mobilization to support myocardial survival by releasing TFF3.


Asunto(s)
Cardiotónicos/metabolismo , Modelos Animales de Enfermedad , Trasplante de Hígado/métodos , Hígado/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Factor Trefoil-3/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología
5.
J Virol ; 95(11)2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33731460

RESUMEN

In many enveloped virus families, including HIV and HSV, a crucial, yet unexploited, step in the viral life cycle is releasing particles from the infected cell membranes. This release process is mediated by host ESCRT complex proteins, which are recruited by viral structural proteins and provides the mechanical means for membrane scission and subsequent viral budding. The prazole drug, tenatoprazole, was previously shown to bind to ESCRT complex member Tsg101 and to quantitatively block the release of infectious HIV-1 from cells in culture. In this report we show that tenatoprazole and a related prazole drug, ilaprazole, effectively block infectious Herpes Simplex Virus (HSV)-1/2 release from Vero cells in culture. By electron microscopy, we found that both prazole drugs block the transit of HSV particles through the cell nuclear membrane resulting in their accumulation in the nucleus. Ilaprazole also quantitatively blocks the release of HIV-1 from 293T cells with an EC50 of 0.8-1.2 µM, which is much more potent than tenatoprazole. Our results indicate that prazole-based compounds may represent a class of drugs with potential to be broad-spectrum antiviral agents against multiple enveloped viruses, by interrupting cellular Tsg101 interaction with maturing virus, thus blocking the budding process that releases particles from the cell.ImportanceThese results provide the basis for the development of drugs that target enveloped virus budding that can be used ultimately to control multiple virus infections in humans.

6.
Cell Chem Biol ; 26(12): 1664-1680.e4, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31668517

RESUMEN

Prion-like protein aggregation underlies the pathology of a group of fatal neurodegenerative diseases in humans, including Alzheimer's disease (AD), Parkinson's disease, amyotrophic lateral sclerosis, and transmissible spongiform encephalopathy. At present, few high-throughput screening (HTS) systems are available for anti-prion small-molecule identification. Here we describe an innovative phenotypic HTS system in yeast that allows for efficient identification of chemical compounds that eliminate the yeast prion [SWI+]. We show that some identified anti-[SWI+] compounds can destabilize other non-[SWI+] prions, and their antagonizing effects can be prion- and/or variant specific. Intriguingly, among the identified hits are several previously identified anti-PrPSc compounds and a couple of US Food and Drug Administration-approved drugs for AD treatment, validating the efficacy of this HTS system. Moreover, a few hits can reduce proteotoxicity induced by expression of several pathogenic mammalian proteins. Thus, we have established a useful HTS system for identifying compounds that can potentially antagonize prionization and human proteinopathies.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Priones/antagonistas & inhibidores , Saccharomyces cerevisiae/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Enfermedad de Alzheimer/tratamiento farmacológico , Humanos , Lectinas de Unión a Manosa/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Priones/genética , Priones/metabolismo , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/uso terapéutico
7.
Bioorg Med Chem Lett ; 29(20): 126660, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31521478

RESUMEN

Enzymes in the methylerythritol phosphate pathway make attractive targets for antibacterial activity due to their importance in isoprenoid biosynthesis and the absence of the pathway in mammals. The fifth enzyme in the pathway, 2-C-methyl-d-erythritol-2,4-cyclodiphosphate synthase (IspF), contains a catalytically important zinc ion in the active site. A series of de novo designed compounds containing a zinc binding group was synthesized and evaluated for antibacterial activity and interaction with IspF from Burkholderia pseudomallei, the causative agent of Whitmore's disease. The series demonstrated antibacterial activity as well as protein stabilization in fluorescence-based thermal shift assays. Finally, the binding of one compound to Burkholderia pseudomallei IspF was evaluated through group epitope mapping by saturation transfer difference NMR.


Asunto(s)
Antibacterianos/química , Proteínas Bacterianas/biosíntesis , Burkholderia pseudomallei/enzimología , Eritritol/análogos & derivados , Liasas de Fósforo-Oxígeno/química , Liasas de Fósforo-Oxígeno/metabolismo , Pirimidinas/química , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Eritritol/biosíntesis , Humanos , Cinética , Estructura Molecular , Unión Proteica , Transducción de Señal , Zinc/química
8.
Nat Commun ; 10(1): 1967, 2019 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-31036849

RESUMEN

Autotransporters are the largest family of outer membrane and secreted proteins in Gram-negative bacteria. Most autotransporters are localised to the bacterial surface where they promote colonisation of host epithelial surfaces. Here we present the crystal structure of UpaB, an autotransporter that is known to contribute to uropathogenic E. coli (UPEC) colonisation of the urinary tract. We provide evidence that UpaB can interact with glycosaminoglycans and host fibronectin. Unique modifications to its core ß-helical structure create a groove on one side of the protein for interaction with glycosaminoglycans, while the opposite face can bind fibronectin. Our findings reveal far greater diversity in the autotransporter ß-helix than previously thought, and suggest that this domain can interact with host macromolecules. The relevance of these interactions during infection remains unclear.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Glicosaminoglicanos/metabolismo , Escherichia coli Uropatógena/metabolismo , Adhesinas Bacterianas/química , Adhesinas Bacterianas/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Factores de Virulencia/química , Factores de Virulencia/metabolismo
9.
Proc Natl Acad Sci U S A ; 115(31): E7408-E7417, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-30012602

RESUMEN

Despite its long history, until now, no receptor has been identified for aspirin, one of the most widely used medicines worldwide. Here we report that peroxisome proliferator-activated receptor alpha (PPARα), a nuclear hormone receptor involved in fatty acid metabolism, serves as a receptor of aspirin. Detailed proteomic analyses including cheminformatics, thermal shift assays, and TR-FRET revealed that aspirin, but not other structural homologs, acts as a PPARα ligand through direct binding at the Tyr314 residue of the PPARα ligand-binding domain. On binding to PPARα, aspirin stimulated hippocampal plasticity via transcriptional activation of cAMP response element-binding protein (CREB). Finally, hippocampus-dependent behavioral analyses, calcium influx assays in hippocampal slices and quantification of dendritic spines demonstrated that low-dose aspirin treatment improved hippocampal plasticity and memory in FAD5X mice, but not in FAD5X/Ppara-null mice. These findings highlight a property of aspirin: stimulating hippocampal plasticity via direct interaction with PPARα.


Asunto(s)
Aspirina/farmacología , Hipocampo/efectos de los fármacos , Memoria/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , PPAR alfa/metabolismo , Animales , Aspirina/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Hipocampo/fisiología , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología , Sinapsis/efectos de los fármacos , Sinapsis/fisiología
10.
J Clin Invest ; 128(10): 4297-4312, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29990310

RESUMEN

Induction of TLR2 activation depends on its association with the adapter protein MyD88. We have found that TLR2 and MyD88 levels are elevated in the hippocampus and cortex of patients with Alzheimer's disease (AD) and in a 5XFAD mouse model of AD. Since there is no specific inhibitor of TLR2, to target induced TLR2 from a therapeutic angle, we engineered a peptide corresponding to the TLR2-interacting domain of MyD88 (TIDM) that binds to the BB loop of only TLR2, and not other TLRs. Interestingly, WT TIDM peptide inhibited microglial activation induced by fibrillar Aß1-42 and lipoteichoic acid, but not 1-methyl-4-phenylpyridinium, dsRNA, bacterial lipopolysaccharide, flagellin, or CpG DNA. After intranasal administration, WT TIDM peptide reached the hippocampus, reduced hippocampal glial activation, lowered Aß burden, attenuated neuronal apoptosis, and improved memory and learning in 5XFAD mice. However, WT TIDM peptide was not effective in 5XFAD mice lacking TLR2. In addition to its effects in 5XFAD mice, WT TIDM peptide also suppressed the disease process in mice with experimental allergic encephalomyelitis and collagen-induced arthritis. Therefore, selective targeting of the activated status of 1 component of the innate immune system by WT TIDM peptide may be beneficial in AD as well as other disorders in which TLR2/MyD88 signaling plays a role in disease pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Hipocampo/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Péptidos/farmacología , Receptor Toll-Like 2/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Animales , Modelos Animales de Enfermedad , Femenino , Hipocampo/patología , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Ratones Transgénicos , Factor 88 de Diferenciación Mieloide/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Receptor Toll-Like 2/genética
11.
Nat Commun ; 8(1): 1391, 2017 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-29123089

RESUMEN

HIV-1 replication requires Tsg101, a component of cellular endosomal sorting complex required for transport (ESCRT) machinery. Tsg101 possesses an ubiquitin (Ub) E2 variant (UEV) domain with a pocket that can bind PT/SAP motifs and another pocket that can bind Ub. The PTAP motif in the viral structural precursor polyprotein, Gag, allows the recruitment of Tsg101 and other ESCRTs to virus assembly sites where they mediate budding. It is not known how or even whether the UEV Ub binding function contributes to virus production. Here, we report that disruption of UEV Ub binding by commonly used drugs arrests assembly at an early step distinct from the late stage involving PTAP binding disruption. NMR reveals that the drugs form a covalent adduct near the Ub-binding pocket leading to the disruption of Ub, but not PTAP binding. We conclude that the Ub-binding pocket has a chaperone function involved in bud initiation.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , VIH-1/metabolismo , Factores de Transcripción/metabolismo , Ensamble de Virus/fisiología , Liberación del Virus/fisiología , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , 2-Piridinilmetilsulfinilbencimidazoles/farmacología , Fármacos Anti-VIH/farmacología , Sitios de Unión , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Esomeprazol/farmacología , Células HEK293 , Células HeLa , Humanos , Chaperonas Moleculares/metabolismo , Unión Proteica , Dominios Proteicos , Factores de Transcripción/genética , Ubiquitina/metabolismo , Ensamble de Virus/efectos de los fármacos , Ensamble de Virus/genética , Liberación del Virus/efectos de los fármacos , Liberación del Virus/genética
13.
J Vis Exp ; (117)2016 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-27911380

RESUMEN

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed ubiquitously throughout the brain, where they function to regulate the excitability of neurons. The subcellular distribution of these channels in pyramidal neurons of hippocampal area CA1 is regulated by tetratricopeptide repeat-containing Rab8b interacting protein (TRIP8b), an auxiliary subunit. Genetic knockout of HCN pore forming subunits or TRIP8b, both lead to an increase in antidepressant-like behavior, suggesting that limiting the function of HCN channels may be useful as a treatment for Major Depressive Disorder (MDD). Despite significant therapeutic interest, HCN channels are also expressed in the heart, where they regulate rhythmicity. To circumvent off-target issues associated with blocking cardiac HCN channels, our lab has recently proposed targeting the protein-protein interaction between HCN and TRIP8b in order to specifically disrupt HCN channel function in the brain. TRIP8b binds to HCN pore forming subunits at two distinct interaction sites, although here the focus is on the interaction between the tetratricopeptide repeat (TPR) domains of TRIP8b and the C terminal tail of HCN1. In this protocol, an expanded description of a method for purifying TRIP8b and executing a high throughput screen to identify small molecule inhibitors of the interaction between HCN and TRIP8b, is described. The method for high throughput screening utilizes a Fluorescence Polarization (FP) -based assay to monitor the binding of a large TRIP8b fragment to a fluorophore-tagged eleven amino acid peptide corresponding to the HCN1 C terminal tail. This method allows 'hit' compounds to be identified based on the change in the polarization of emitted light. Validation assays are then performed to ensure that 'hit' compounds are not artifactual.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Trastorno Depresivo Mayor/metabolismo , Trastorno Depresivo Mayor/terapia , Humanos , Proteínas de la Membrana , Unión Proteica , Bibliotecas de Moléculas Pequeñas
14.
Nat Chem Biol ; 12(12): 1075-1083, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27748752

RESUMEN

Peroxisome proliferator-activated receptor-α (PPARα) regulates hepatic fatty acid catabolism and mediates the metabolic response to starvation. Recently we found that PPARα is constitutively activated in nuclei of hippocampal neurons and controls plasticity via direct transcriptional activation of CREB. Here we report the discovery of three endogenous PPARα ligands-3-hydroxy-(2,2)-dimethyl butyrate, hexadecanamide, and 9-octadecenamide-in mouse brain hippocampus. Mass spectrometric detection of these compounds in mouse hippocampal nuclear extracts, in silico interaction studies, time-resolved FRET analyses, and thermal shift assay results clearly indicated that these three compounds served as ligands of PPARα. Site-directed mutagenesis studies further revealed that PPARα Y464 and Y314 are involved in binding these hippocampal ligands. Moreover, these ligands activated PPARα and upregulated the synaptic function of hippocampal neurons. These results highlight the discovery of hippocampal ligands of PPARα capable of modulating synaptic functions.


Asunto(s)
Hipocampo/metabolismo , Hidroxibutiratos/farmacología , PPAR alfa/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Hidroxibutiratos/química , Ligandos , Ratones , Ratones Noqueados , Modelos Moleculares , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ácidos Oléicos/química , Ácidos Oléicos/farmacología , Ácidos Palmíticos/química , Ácidos Palmíticos/farmacología , Relación Estructura-Actividad
15.
Data Brief ; 7: 537-9, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27054155

RESUMEN

The fluorescence-based thermal shift (FTS) data presented here include Table S1 and Fig. S1, and are supplemental to our original research article describing detailed structural, FTS, and fluorescence polarization analyses of the Salmonella enterica subsp. entrica serovar Typhimurium str. LT2 multidrug transcriptional regulator AcrR (StAcrR) (doi:10.1016/j.jsb.2016.01.008) (Manjasetty et al., 2015 [1]). Table S1 contains chemical formulas, a Chemical Abstracts Service (CAS) Registry Number (CAS no.), FTS rank (a ligand with the highest rank) has the largest difference in the melting temperature (ΔT m), and uses as drug molecules against various pathological conditions of sixteen small-molecule ligands that increase thermal stability of StAcrR. Thermal stability of human enolase 1, a negative control protein, was not affected in the presence of various concentrations of the top six StAcrR binders (Fig. S1).

16.
FEBS J ; 283(12): 2206-18, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27101811

RESUMEN

UNLABELLED: Mycobacterium tuberculosis is a human respiratory pathogen that causes the deadly disease tuberculosis. The rapid global spread of antibiotic-resistant M. tuberculosis makes tuberculosis infections difficult to treat. To overcome this problem new effective antimicrobial strategies are urgently needed. One promising target for new therapeutic approaches is PonA1, a class A penicillin-binding protein, which is required for maintaining physiological cell wall synthesis and cell shape during growth in mycobacteria. Here, crystal structures of the transpeptidase domain, the enzymatic domain responsible for penicillin binding, of PonA1 from M. tuberculosis in the inhibitor-free form and in complex with penicillin V are reported. We used site-directed mutagenesis, antibiotic profiling experiments, and fluorescence thermal shift assays to measure PonA1's sensitivity to different classes of ß-lactams. Structural comparison of the PonA1 apo-form and the antibiotic-bound form shows that binding of penicillin V induces conformational changes in the position of the loop ß4'-α3 surrounding the penicillin-binding site. We have also found that binding of different antibiotics including penicillin V positively impacts protein stability, while other tested ß-lactams such as clavulanate or meropenem resulted in destabilization of PonA1. Our antibiotic profiling experiments indicate that the transpeptidase activity of PonA1 in both M. tuberculosis and M. smegmatis mediates tolerance to specific cell wall-targeting antibiotics, particularly to penicillin V and meropenem. Because M. tuberculosis is an important human pathogen, these structural data provide a template to design novel transpeptidase inhibitors to treat tuberculosis infections. DATABASE: Structural data are available in the PDB database under the accession numbers 5CRF and 5CXW.


Asunto(s)
Mycobacterium tuberculosis/enzimología , Penicilina V/química , Proteínas de Unión a las Penicilinas/química , Peptidil Transferasas/química , Sitios de Unión , Cristalografía por Rayos X , Farmacorresistencia Microbiana/genética , Humanos , Mutagénesis Sitio-Dirigida , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/patogenicidad , Penicilina V/uso terapéutico , Proteínas de Unión a las Penicilinas/antagonistas & inhibidores , Proteínas de Unión a las Penicilinas/genética , Peptidil Transferasas/antagonistas & inhibidores , Peptidil Transferasas/genética , Tuberculosis/tratamiento farmacológico , Tuberculosis/enzimología , Tuberculosis/microbiología , beta-Lactamas/química , beta-Lactamas/uso terapéutico
17.
Nat Commun ; 7: 11000, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26987594

RESUMEN

Most low GC Gram-positive bacteria possess an essential walKR two-component system (TCS) for signal transduction involved in regulating cell wall homoeostasis. Despite the well-established intracellular regulatory mechanism, the role of this TCS in extracellular signal recognition and factors that modulate the activity of this TCS remain largely unknown. Here we identify the extracellular receptor of the kinase 'WalK' (erWalK) as a key hub for bridging extracellular signal input and intracellular kinase activity modulation in Staphylococcus aureus. Characterization of the crystal structure of erWalK revealed a canonical Per-Arnt-Sim (PAS) domain for signal sensing. Single amino-acid mutation of potential signal-transduction residues resulted in severely impaired function of WalKR. A small molecule derived from structure-based virtual screening against erWalK is capable of selectively activating the walKR TCS. The molecular level characterization of erWalK will not only facilitate exploration of natural signal(s) but also provide a template for rational design of erWalK inhibitors.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Transducción de Señal , Staphylococcus aureus/metabolismo , Benzofenonas/farmacología , Cristalografía por Rayos X , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Proteínas Mutantes/metabolismo , Mutación/genética , Estructura Terciaria de Proteína , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Staphylococcus aureus/genética , Staphylococcus aureus/ultraestructura , Transcripción Genética/efectos de los fármacos
18.
J Struct Biol ; 194(1): 18-28, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26796657

RESUMEN

Multidrug transcription regulator AcrR from Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 belongs to the tetracycline repressor family, one of the largest groups of bacterial transcription factors. The crystal structure of dimeric AcrR was determined and refined to 1.56Å resolution. The tertiary and quaternary structures of AcrR are similar to those of its homologs. The multidrug binding site was identified based on structural alignment with homologous proteins and has a di(hydroxyethyl)ether molecule bound. Residues from helices α4 and α7 shape the entry into this binding site. The structure of AcrR reveals that the extended helical conformation of helix α4 is stabilized by the hydrogen bond between Glu67 (helix α4) and Gln130 (helix α7). Based on the structural comparison with the closest homolog structure, the Escherichia coli AcrR, we propose that this hydrogen bond is responsible for control of the loop-to-helix transition within helix α4. This local conformational switch of helix α4 may be a key step in accessing the multidrug binding site and securing ligands at the binding site. Solution small-molecule binding studies suggest that AcrR binds ligands with their core chemical structure resembling the tetracyclic ring of cholesterol.


Asunto(s)
Proteínas Bacterianas/química , Dominios Proteicos , Estructura Secundaria de Proteína , Proteínas Represoras/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Enlace de Hidrógeno , Ligandos , Modelos Moleculares , Unión Proteica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Homología de Secuencia de Ácido Nucleico
19.
Cell Rep ; 14(3): 611-620, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26774481

RESUMEN

Long-distance intracellular transport of organelles, mRNA, and proteins ("cargo") occurs along the microtubule cytoskeleton by the action of kinesin and dynein motor proteins, but the vast network of factors involved in regulating intracellular cargo transport are still unknown. We capitalize on the Drosophila melanogaster S2 model cell system to monitor lysosome transport along microtubule bundles, which require enzymatically active kinesin-1 motor protein for their formation. We use an automated tracking program and a naive Bayesian classifier for the multivariate motility data to analyze 15,683 gene phenotypes and find 98 proteins involved in regulating lysosome motility along microtubules and 48 involved in the formation of microtubule filled processes in S2 cells. We identify innate immunity genes, ion channels, and signaling proteins having a role in lysosome motility regulation and find an unexpected relationship between the dynein motor, Rab7a, and lysosome motility regulation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Genoma , Lisosomas/fisiología , Microtúbulos/metabolismo , Animales , Teorema de Bayes , Células Cultivadas , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Dineínas/antagonistas & inhibidores , Dineínas/genética , Dineínas/metabolismo , Fenotipo , Interferencia de ARN , ARN Bicatenario/metabolismo , Imagen de Lapso de Tiempo , Proteínas de Unión al GTP rab/antagonistas & inhibidores , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
20.
Sci Rep ; 5: 15960, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26521685

RESUMEN

The bipolar spiral ganglion neurons (SGN) carry sound information from cochlear hair cells to the brain. After noise, antibiotic or toxic insult to the cochlea, damage to SGN and/or hair cells causes hearing impairment. Damage ranges from fiber and synapse degeneration to dysfunction and loss of cells. New interventions to regenerate peripheral nerve fibers could help reestablish transfer of auditory information from surviving or regenerated hair cells or improve results from cochlear implants, but the biochemical mechanisms to target are largely unknown. Presently, no drugs exist that are FDA approved to stimulate the regeneration of SGN nerve fibers. We designed an original phenotypic assay to screen 440 compounds of the NIH Clinical Collection directly on dissociated mouse spiral ganglia. The assay detected one compound, cerivastatin, that increased the length of regenerating neurites. The effect, mimicked by other statins at different optimal concentrations, was blocked by geranylgeraniol. These results demonstrate the utility of screening small compound libraries on mixed cultures of dissociated primary ganglia. The success of this screen narrows down a moderately sized library to a single compound which can be elevated to in-depth in vivo studies, and highlights a potential new molecular pathway for targeting of hearing loss drugs.


Asunto(s)
Cóclea/efectos de los fármacos , Células Ciliadas Auditivas/efectos de los fármacos , Regeneración Nerviosa/efectos de los fármacos , Neuritas/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Ganglio Espiral de la Cóclea/efectos de los fármacos , Animales , Animales Recién Nacidos , Femenino , Masculino , Ratones , Sinapsis/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...