Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2403808, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770988

RESUMEN

Direct electrosynthesis of hydrogen peroxide (H2O2) with high production rate and high selectivity through the two-electron oxygen reduction reaction (2e-ORR) offers a sustainable alternative to the energy-intensive anthraquinone technology but remains a challenge. Herein, a low-coordinated, 2D conductive Zn/Cu metal-organic framework supported on hollow nanocube structures (ZnCu-MOF (H)) is rationally designed and synthesized. The as-prepared ZnCu-MOF (H) catalyst exhibits substantially boosted electrocatalytic kinetics, enhanced H2O2 selectivity, and ultra-high Faradaic efficiency for 2e-ORR process in both alkaline and neutral conditions. Electrochemical measurements, operando/quasi in situ spectroscopy, and theoretical calculation demonstrate that the introduction of Cu atoms with low-coordinated structures induces the transformation of active sites, resulting in the beneficial electron transfer and the optimized energy barrier, thereby improving the electrocatalytic activity and selectivity.

2.
Adv Mater ; 36(18): e2312645, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38271637

RESUMEN

The artificial disturbance in the nitrogen cycle has necessitated an urgent need for nitric oxide (NO) removal. Electrochemical technologies for NO conversion have gained increasing attention in recent years. This comprehensive review presents the recent advancements in selective electrocatalytic conversion of NO to high value-added chemicals, with specific emphasis on catalyst design, electrolyte composition, mass diffusion, and adsorption energies of key intermediate species. Furthermore, the review explores the synergistic electrochemical co-electrolysis of NO with specific carbon source molecules, enabling the synthesis of a range of valuable chemicals with C─N bonds. It also provides in-depth insights into the intricate reaction pathways and underlying mechanisms, offering valuable perspectives on the challenges and prospects of selective NO electrolysis. By advancing comprehension and fostering awareness of nitrogen cycle balance, this review contributes to the development of efficient and sustainable electrocatalytic systems for the selective synthesis of valuable chemicals from NO.

3.
J Am Chem Soc ; 146(5): 3343-3351, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38261381

RESUMEN

Photocatalytic O2 reduction is an intriguing approach to producing H2O2, but its efficiency is often hindered by the limited solubility and mass transfer of O2 in the aqueous phase. Here, we design and fabricate a two-layered (2L) Janus fiber membrane photocatalyst with asymmetric hydrophobicity for efficient photocatalytic H2O2 production. The top layer of the membrane consists of superhydrophobic polytetrafluoroethylene (PTFE) fibers with a dispersed modified carbon nitride (mCN) photocatalyst. Amphiphilic Nafion (Naf) ionomer is sprayed onto this layer to modulate the microenvironment and achieve moderate hydrophobicity. In contrast, the bottom layer consists of bare PTFE fibers with high hydrophobicity. The elaborate structural configuration and asymmetric hydrophobicity feature of the optimized membrane photocatalyst (designated as 2L-mCN/F-Naf; F, PTFE) allow most mCN to be exposed with gas-liquid-solid triple-phase interfaces and enable rapid mass transfer of gaseous O2 within the hierarchical membrane, thus increasing the local O2 concentration near the mCN photocatalyst. As a result, the optimized 2L-mCN/F-Naf membrane photocatalyst shows remarkable photocatalytic H2O2 production activity, achieving a rate of 5.38 mmol g-1 h-1 under visible light irradiation.

4.
Angew Chem Int Ed Engl ; 63(8): e202317572, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38116911

RESUMEN

Exploring unique single-atom sites capable of efficiently reducing O2 to H2 O2 while being inert to H2 O2 decomposition under light conditions is significant for H2 O2 photosynthesis, but it remains challenging. Herein, we report the facile design and fabrication of polymeric carbon nitride (CN) decorated with single-Zn sites that have tailorable local coordination environments, which is enabled by utilizing different Zn salt anions. Specifically, the O atom from acetate (OAc) anion participates in the coordination of single-Zn sites on CN, forming asymmetric Zn-N3 O moiety on CN (denoted as CN/Zn-OAc), in contrast to the obtained Zn-N4 sites when sulfate (SO4 ) is adopted (CN/Zn-SO4 ). Both experimental and theoretical investigations demonstrate that the Zn-N3 O moiety exhibits higher intrinsic activity for O2 reduction to H2 O2 than the Zn-N4 moiety. This is attributed to the asymmetric N/O coordination, which promotes the adsorption of O2 and the formation of the key intermediate *OOH on Zn sites due to their modulated electronic structure. Moreover, it is inactive for H2 O2 decomposition under both dark and light conditions. As a result, the optimized CN/Zn-OAc catalyst exhibits significantly improved photocatalytic H2 O2 production activity under visible light irradiation.

5.
Angew Chem Int Ed Engl ; 62(51): e202315257, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37930152

RESUMEN

Layered manganese dioxide is a promising cathode candidate for aqueous Zn-ion batteries. However, the narrow interlayer spacing, inferior intrinsic electronic conductivity and poor structural stability still limit its practical application. Herein, we report a two-step strategy to incorporate ammonium ions into manganese dioxide (named as AMO) nanosheets as a cathode for boosted Zn ion storage. K+ -intercalated δ-MnO2 nanosheets (KMO) grown on carbon cloth are chosen as the self-involved precursor. Of note, ammonium ions could replace K+ ions via a facile hydrothermal reaction to enlarge the lattice space and form hydrogen-bond networks. Compared with KMO, the structural stability and the ion transfer kinetics of the layered AMO are enhanced. As expected, the obtained AMO cathode exhibits remarkable electrochemical properties in terms of high reversible capacity, decent rate performance and superior cycling stability over 10000 cycles.

6.
Angew Chem Int Ed Engl ; 62(47): e202313914, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37789565

RESUMEN

Precise manipulation of the coordination environment of single-atom catalysts (SACs), particularly the simultaneous engineering of multiple coordination shells, is crucial to maximize their catalytic performance but remains challenging. Herein, we present a general two-step strategy to fabricate a series of hollow carbon-based SACs featuring asymmetric Zn-N2 O2 moieties simultaneously modulated with S atoms in higher coordination shells of Zn centers (n≥2; designated as Zn-N2 O2 -S). Systematic analyses demonstrate that the synergetic effects between the N2 O2 species in the first coordination shell and the S atoms in higher coordination shells lead to robust discrete Zn sites with the optimal electronic structure for selective O2 reduction to H2 O2 . Remarkably, the Zn-N2 O2 moiety with S atoms in the second coordination shell possesses a nearly ideal Gibbs free energy for the key OOH* intermediate, which favors the formation and desorption of OOH* on Zn sites for H2 O2 generation. Consequently, the Zn-N2 O2 -S SAC exhibits impressive electrochemical H2 O2 production performance with high selectivity of 96 %. Even at a high current density of 80 mA cm-2 in the flow cell, it shows a high H2 O2 production rate of 6.924 mol gcat -1 h-1 with an average Faradaic efficiency of 93.1 %, and excellent durability over 65 h.

7.
Angew Chem Int Ed Engl ; 62(44): e202310847, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37698180

RESUMEN

Developing highly efficient catalytic sites for O2 reduction to H2 O2 , while ensuring the fast injection of energetic electrons into these sites, is crucial for artificial H2 O2 photosynthesis but remains challenging. Herein, we report a strongly coupled hybrid photocatalyst comprising polymeric carbon nitride (CN) and a two-dimensional conductive Zn-containing metal-organic framework (Zn-MOF) (denoted as CN/Zn-MOF(lc)/400; lc, low crystallinity; 400, annealing temperature in °C), in which the catalytic capability of Zn-MOF(lc) for H2 O2 production is unlocked by the annealing-induced effects. As revealed by experimental and theoretical calculation results, the Zn sites coordinated to four O (Zn-O4 ) in Zn-MOF(lc) are thermally activated to a relatively electron-rich state due to the annealing-induced local structure shrinkage, which favors the formation of a key *OOH intermediate of 2e- O2 reduction on these sites. Moreover, the annealing treatment facilitates the photoelectron migration from the CN photocatalyst to the Zn-MOF(lc) catalytic unit. As a result, the optimized catalyst exhibits dramatically enhanced H2 O2 production activity and excellent stability under visible light irradiation.

8.
Angew Chem Int Ed Engl ; 62(45): e202312145, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37728430

RESUMEN

Constructing multifunctional interphases to suppress the rampant Zn dendrite growth and detrimental side reactions is crucial for Zn anodes. Herein, a phytic acid (PA)-ZnAl coordination compound is demonstrated as a versatile interphase layer to stabilize Zn anodes. The zincophilic PA-ZnAl layer can manipulate Zn2+ flux and promote rapid desolvation kinetics, ensuring the uniform Zn deposition with dendrite-free morphology. Moreover, the robust PA-ZnAl protective layer can effectively inhibit the hydrogen evolution reaction and formation of byproducts, further contributing to the reversible Zn plating/stripping with high Coulombic efficiency. As a result, the Zn@PA-ZnAl electrode shows a lower Zn nucleation overpotential and higher Zn2+ transference number compared with bare Zn. The Zn@PA-ZnAl symmetric cell exhibits a prolonged lifespan of 650 h tested at 5 mA cm-2 and 5 mAh cm-2 . Furthermore, the assembled Zn battery full cell based on this Zn@PA-ZnAl anode also delivers decent cycling stability even under harsh conditions.

9.
Adv Mater ; : e2306047, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37496431

RESUMEN

Manipulating the coordination environment and electron distribution for heterogeneous catalysts at the atomic level is an effective strategy to improve electrocatalytic performance but remains challenging. Herein, atomically dispersed Fe and Co anchored on nitrogen, phosphorus co-doped carbon hollow nanorod structures (FeCo-NPC) are rationally designed and synthesized. The as-prepared FeCo-NPC catalyst exhibits significantly boosted electrocatalytic kinetics and greatly upshifts the half-wave potential for the oxygen reduction reaction. Furthermore, when utilized as the cathode, the FeCo-NPC catalyst also displays excellent zinc-air battery performance. Experimental and theoretical results demonstrate that the introduction of single Co atoms with Co-N/P coordination around isolated Fe atoms induces asymmetric electron distribution, resulting in the suitable adsorption/desorption ability for oxygen intermediates and the optimized reaction barrier, thereby improving the electrocatalytic activity.

10.
Angew Chem Int Ed Engl ; 62(31): e202305828, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37278545

RESUMEN

Lithium-sulfur (Li-S) batteries are considered as promising candidates for next-generation energy storage systems in view of the high theoretical energy density and low cost of sulfur resources. The suppression of polysulfide diffusion and promotion of redox kinetics are the main challenges for Li-S batteries. Herein, we design and prepare a novel type of ZnCo-based bimetallic metal-organic framework nanoboxes (ZnCo-MOF NBs) to serve as a functional sulfur host for Li-S batteries. The hollow architecture of ZnCo-MOF NBs can ensure fast charge transfer, improved sulfur utilization, and effective confinement of lithium polysulfides (LiPSs). The atomically dispersed Co-O4 sites in ZnCo-MOF NBs can firmly capture LiPSs and electrocatalytically accelerate their conversion kinetics. Benefiting from the multiple structural advantages, the ZnCo-MOF/S cathode shows high reversible capacity, impressive rate capability, and prolonged cycling performance for 300 cycles.

11.
Sci Adv ; 9(26): eadh1320, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37379398

RESUMEN

Manipulating the intrinsic activity of heterogeneous catalysts at the atomic level is an effective strategy to improve the electrocatalytic performances but remains challenging. Here, atomically dispersed Ni anchored on CeO2 particles entrenched on peanut-shaped hollow nitrogen-doped carbon structures (a-Ni/CeO2@NC) is rationally designed and synthesized. The as-prepared a-Ni/CeO2@NC catalyst exhibits substantially boosted intrinsic activity and greatly reduced overpotential for the electrocatalytic oxygen evolution reaction. Experimental and theoretical results demonstrate that the decoration of isolated Ni species over the CeO2 induces electronic coupling and redistribution, thus resulting in the activation of the adjacent Ce sites around Ni atoms and greatly accelerated oxygen evolution kinetics. This work provides a promising strategy to explore the electronic regulation and intrinsic activity improvement at the atomic level, thereby improving the electrocatalytic activity.

12.
J Am Chem Soc ; 145(22): 12333-12341, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37233204

RESUMEN

Zn dendrite growth and undesired parasitic reactions severely restrict the practical use of deep-cycling Zn metal anodes (ZMAs). Herein, we demonstrate an elaborate design of atomically dispersed Cu and Zn sites anchored on N,P-codoped carbon macroporous fibers (denoted as Cu/Zn-N/P-CMFs) as a three-dimensional (3D) versatile host for efficient ZMAs in mildly acidic electrolyte. The 3D macroporous frameworks can alleviate the structural stress and suppress Zn dendrite growth by spatially homogenizing Zn2+ flux. Moreover, the well-dispersed Cu and Zn atoms anchored by N and P atoms maximize the utilization as abundant active nucleation sites for Zn plating. As expected, the Cu/Zn-N/P-CMFs host presents a low Zn nucleation overpotential, high reversibility, and dendrite-free Zn deposition. The Cu/Zn-N/P-CMFs-Zn electrode exhibits stable Zn plating/stripping with low polarization for 630 h at 2 mA cm-2 and 2 mAh cm-2. When coupled with a MnO2 cathode, the fabricated full cell also shows impressive cycling performance even when tested under harsh conditions.

13.
Sci Adv ; 9(14): eadf1550, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37018409

RESUMEN

The lithium (Li) metal anode (LMA) is susceptible to failure due to the growth of Li dendrites caused by an unsatisfied solid electrolyte interface (SEI). With this regard, the design of artificial SEIs with improved physicochemical and mechanical properties has been demonstrated to be important to stabilize the LMAs. This review comprehensively summarizes current efficient strategies and key progresses in surface engineering for constructing protective layers to serve as the artificial SEIs, including pretreating the LMAs with the reagents situated in different primary states of matter (solid, liquid, and gas) or using some peculiar pathways (plasma, for example). The fundamental characterization tools for studying the protective layers on the LMAs are also briefly introduced. Last, strategic guidance for the deliberate design of surface engineering is provided, and the current challenges, opportunities, and possible future directions of these strategies for the development of LMAs in practical applications are discussed.

14.
Adv Mater ; 35(19): e2207888, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36921278

RESUMEN

Hybrid materials, integrating the merits of individual components, are ideal structures for efficient oxygen evolution reaction (OER). However, the rational construction of hybrid structures with decent physical/electrochemical properties is yet challenging. Herein, a promising OER electrocatalyst composed of trimetallic metal-organic frameworks supported over S/N-doped carbon macroporous fibers (S/N-CMF@Fex Coy Ni1-x-y -MOF) via a cation-exchange strategy is delicately fabricated. Benefiting from the trimetallic composition with improved intrinsic activity, hollow S/N-CMF matrix facilitating exposure of active sites, as well as their robust integration, the resultant S/N-CMF@Fex Coy Ni1-x-y -MOF electrocatalyst delivers outstanding activity and stability for alkaline OER. Specifically, it needs an overpotential of 296 mV to reach the benchmark current density of 10 mA cm-2 with a small Tafel slope of 53.5 mV dec-1 . In combination with X-ray absorption fine structure spectroscopy and density functional theory calculations, the post-formed Fe/Co-doped γ-NiOOH during the OER operation is revealed to account for the high OER performance of S/N-CMF@Fex Coy Ni1-x-y -MOF.

15.
Angew Chem Int Ed Engl ; 62(19): e202302128, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-36849633

RESUMEN

Gas-liquid-solid triple-phase interfaces (TPI) are essential for promoting electrochemical CO2 reduction, but it remains challenging to maximize their efficiency while integrating other desirable properties conducive to electrocatalysis. Herein, we report the elaborate design and fabrication of a superhydrophobic, conductive, and hierarchical wire membrane in which core-shell CuO nanospheres, carbon nanotubes (CNT), and polytetrafluoroethylene (PTFE) are integrated into a wire structure (designated as CuO/F/C(w); F, PTFE; C, CNT; w, wire) to maximize their respective functions. The realized architecture allows almost all CuO nanospheres to be exposed with effective TPI and good contact to conductive CNT, thus increasing the local CO2 concentration on the CuO surface and enabling fast electron/mass transfer. As a result, the CuO/F/C(w) membrane attains a Faradaic efficiency of 56.8 % and a partial current density of 68.9 mA cm-2 for multicarbon products at -1.4 V (versus the reversible hydrogen electrode) in the H-type cell, far exceeding 10.1 % and 13.4 mA cm-2 for bare CuO.

16.
Angew Chem Int Ed Engl ; 61(49): e202213049, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36218244

RESUMEN

The exploration of earth-abundant and efficient electrocatalysts toward the oxygen evolution reaction (OER) is critical for sustainable energy storage and conversion devices. In this work, we report a self-engaged strategy to fabricate a yolk-shelled OER electrocatalyst. Starting with a metal-organic framework, Co-Fe layered double hydroxide (LDH)@zeolitic imidazolate framework-67 (ZIF-67) yolk-shelled structures are formed in one step. Afterwards, these ZIF-67 building blocks are transformed into Ni-Co LDH nanocages to form the Ni-Co-Fe hydr(oxy)oxide@Ni-Co LDH yolk-shelled microrods (NiCoFe-HO@NiCo-LDH YSMRs) through an ion-exchange reaction. Owing to the structural and compositional merits, the NiCoFe-HO@NiCo-LDH YSMR electrocatalyst exhibits an overpotential of 278 mV to reach the current density of 10 mA cm-2 , a small Tafel slope of 49.7 mV dec-1 , and good stability in alkaline media.

17.
Angew Chem Int Ed Engl ; 61(48): e202212031, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36177990

RESUMEN

Prussian blue analogs (PBAs) are promising candidates for aqueous Zn-ion batteries due to their unique open-framework structures. However, they suffer from limited capacity and severe capacity decay originating from insufficient redox sites and structural instability. Herein, Cu-substituted Mn-PBA double-shelled nanoboxes (CuMn-PBA DSNBs) prepared by tannic acid etching and cation exchange approaches are demonstrated for efficient Zn ion storage. The unique hollow structures can expose abundant active sites and alleviate the volume change during the cycling test. Moreover, partial Cu substitution and induced Mn vacancies might inhibit the Jahn-Teller distortions of Mn-N6 octahedra, thus contributing to the prolonged lifespan. As a result, CuMn-PBA DSNBs exhibit high reversible capacity, decent rate performance and superior cycling stability for 2000 cycles. Furthermore, ex situ characterizations reveal that the charge storage mechanism of CuMn-PBA DSNBs mainly involves the reversible redox reactions of transition metals and Zn2+ ion insertion/extraction processes.

18.
Angew Chem Int Ed Engl ; 61(45): e202212542, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36093883

RESUMEN

Trapping the active sites on the exterior surface of hollow supports can reduce mass transfer resistance and enhance atomic utilization. Herein, we report a facile chemical vapor deposition strategy to synthesize single-Ni atoms decorated hollow S/N-doped football-like carbon spheres (Ni SAs@S/N-FCS). Specifically, the CdS@3-aminophenol/formaldehyde is carbonized into S/N-FCS. The gas-migrated Ni species are anchored on the surface of S/N-FCS simultaneously, yielding Ni SAs@S/N-FCS. The obtained catalyst exhibits outstanding performance for alkaline oxygen evolution reaction (OER) with an overpotential of 249 mV at 10 mA cm-2 , a small Tafel slope of 56.5 mV dec-1 , and ultra-long stability up to 166 hours without obvious fading. Moreover, the potential-driven dynamic behaviors of Ni-N4 sites and the contribution of the S dopant at different locations in the matrix to the OER activity are revealed by the operando X-ray absorption spectroscopy and theoretical calculations, respectively.

19.
Angew Chem Int Ed Engl ; 61(47): e202212680, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36165571

RESUMEN

Physicochemical confinement and catalytic conversion of lithium polysulfides (LiPSs) are crucial to suppress the shuttle effect and enhance the redox kinetics of lithium-sulfur (Li-S) batteries. In this study, a NH4 Cl-assisted pyrolysis strategy is developed to fabricate highly mesoporous N-rich carbon (designed as NC(p)) featuring thin outer shells and porous inner networks, on which single-Ni atoms are anchored to form an excellent sulfur host (designed as Ni-NC(p)) for Li-S batteries. During pyrolysis, the pyrolytic HCl from confined NH4 Cl within ZIF-8 will in situ etch ZIF-8 to produce rich mesoporous in the carbonized product NC(p). The mesoporous Ni-NC(p) enables favorable electron/ion transfer, high sulfur loading, and effective confinement of LiPSs, while the catalytic effect of single-Ni species enhances the redox kinetics of LiPSs. As a result, the sulfur cathode based on the Ni-NC(p) host delivers obviously improved Li-S battery performance with high specific capacity, good rate capability, and cycling stability.

20.
Adv Mater ; 34(42): e2204865, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36048463

RESUMEN

Despite suffering from slow charge-carrier mobility, photocatalysis is still an attractive and promising technology toward producing green fuels from solar energy. An effective approach is to design and fabricate advanced architectural materials as photocatalysts to enhance the performance of semiconductor-based photocatalytic systems. Herein, metal-organic-framework-derived hierarchically ordered porous nitrogen and carbon co-doped ZnO (N-C-ZnO) structures are developed as nanoreactors with decorated CoOx nanoclusters for CO2 -to-CO conversion driven by visible light. Introduction of hierarchical nanoarchitectures with highly ordered interconnected meso-macroporous channels shows beneficial properties for photocatalytic reduction reactions, including enhanced mobility of charge carriers throughout the highly accessible framework, maximized exposure of active sites, and inhibited recombination of photoinduced charge carriers. Density functional theory calculations further reveal the key role of CoOx nanoclusters with high affinity to CO2 molecules, and the CoO bonds formed on the surface of the composite exhibit stronger charge redistribution. As a result, the obtained CoOx /N-C-ZnO demonstrates enhanced photocatalysis performance in terms of high CO yield and long-term stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...