Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(20): 29132-29147, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38568311

RESUMEN

Layered double hydroxides (LDH) hold great promise as phosphate adsorbents; however, the conventional binary LDH exhibits low adsorption rate and adsorption capacity. In this study, Mg and La were chosen as binary metals in the synthesis of Mg-La LDH to enhance phosphate efficient adsorption. Different molar ratios of Mg to La (2:1, 3:1, and 4:1) were investigated to further enhance P adsorption. The best performing Mg-La LDH, with Mg to La ratio is 4:1 (LDH-4), presented a larger adsorption capacity and faster adsorption rate than other Mg-La LDH. The maximum adsorption capacity (87.23 mg/g) and the rapid adsorption rate in the initial 25 min of LDH-4 (70 mg/(g·h)) were at least 1.6 times and 1.8 times higher than the others. The kinetics, isotherms, the effect of initial pH and co-existing anions, and the adsorption-desorption cycle experiment were studied. The batch experiment results proved that the chemisorption progress occurred on the single-layered LDH surface and the optimized LDH exhibited strong anti-interference capability. Furthermore, the structural characteristics and adsorption mechanism were further investigated by SEM, BET, FTIR, XRD, and XPS. The characterization results showed that the different metal ratios could lead to changes in the metal hydroxide layer and the main ions inside. At lower Mg/La ratios, distortion occurred in the hydroxide layer, resulting in lower crystallinity and lower performance. The characterization results also proved that the main mechanisms of phosphate adsorption are electrostatic adsorption, ion exchange, and inner-sphere complexation. The results emphasized that the Mg-La LDH was efficient in phosphate removal and could be successfully used for this purpose.


Asunto(s)
Hidróxidos , Magnesio , Fosfatos , Adsorción , Hidróxidos/química , Fosfatos/química , Magnesio/química , Cinética , Lantano/química , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno
2.
J Environ Manage ; 353: 120189, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38295644

RESUMEN

Insufficient carbon source has become the main limiting factor for efficient nitrogen removal in wastewater treatment. In this study, an intermittently-aerated activated sludge system with iron-chitosan (Fe-CS) beads addition was proposed for nitrogen removal from low C/N wastewater. By adding Fe-CS beads, partial nitrification-denitrification (PND) process and significant enrichment of Paracoccus (with ability of iron reduction/ammonium oxidation/aerobic denitrification) were observed in the reactor. The accumulation rate of NO2--N reached 81.9 %, and the total nitrogen removal efficiency was improved to 93.9 % by shortening the aeration time. The higher activity of ammonium oxidizing bacteria and inhibited activity of nitrite-oxidizing bacteria in Fe-CS assisted system mediated the occurrence of PND. In contrast, the traditional nitrification and denitrification process occurred in the control group. The high-throughput sequencing analysis and metagenomic results confirmed that the addition of Fe-CS induced 77.8 % and 54.9 % enrichment of Paracoccus in sludge and Fe-CS beads, respectively, while almost no enrichment was observed in control group. Furthermore, with the addition of Fe-CS beads, the expression of genes related to outer membrane porin, cytochrome c, and TCA was strengthened, thereby enhancing the electron transport of Fe(Ⅱ) (electron donor) and Fe(Ⅲ) (electron acceptor) with pollutants in the periplasm. This study provides new insights into the direct enrichment of iron-reducing bacteria and its PND performance induced by the Fe-CS bead addition. It therefore offers an appealing strategy for low C/N wastewater treatment.


Asunto(s)
Compuestos de Amonio , Quitosano , Paracoccus , Nitrificación , Aguas del Alcantarillado , Desnitrificación , Quitosano/metabolismo , Hierro , Paracoccus/metabolismo , Reactores Biológicos/microbiología , Bacterias/metabolismo , Compuestos de Amonio/metabolismo , Oxidación-Reducción , Nitrógeno/metabolismo
3.
Bioresour Technol ; 394: 130178, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38072080

RESUMEN

In this study, an anaerobic/intermittently-aerated moving bed biofilm reactor (AnIA-MBBR) was proposed to realize simultaneous nitrification and endogenous denitrifying phosphorus removal (SNEDPR) in treating low carbon-to-nitrogen (C/N) ratio wastewater. The effect of different intermittent aeration modes (short and long aeration) on nutrients' removal was investigated. With the C/N ratio around 3, the removal efficiencies of total nitrogen and phosphorus were 90% and 74%, 88% and 59%, respectively, for short aeration and long aeration. The different aeration time also altered the nutrients' degradation pathway, biofilm characteristics, microbial community, and functional metabolic pathways. The results confirmed the occurrence of aerobic denitrifiers, anoxic denitrifiers, phosphorus accumulating organisms, glycogen accumulating organisms in AnIA-MBBR systems and their synergistic performance induced the SNEDPR. These results indicated that the application of AnIA in MBBR systems was an effective strategy to achieve SNEDPR, providing better simultaneous removal performance of nitrogen and phosphorus from low C/N ratio wastewater.


Asunto(s)
Nitrificación , Purificación del Agua , Aguas Residuales , Desnitrificación , Eliminación de Residuos Líquidos/métodos , Aguas del Alcantarillado , Fósforo/metabolismo , Nitrógeno/metabolismo , Carbono/metabolismo , Biopelículas , Anaerobiosis , Reactores Biológicos
4.
Environ Sci Pollut Res Int ; 30(47): 104532-104543, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37704810

RESUMEN

In this study, the effect of anaerobic duration on phosphorus (P) removal in reversed AAO (anoxic-anaerobic-oxic) process was investigated using synthetic wastewater (with different volatile fatty acid (VFA) ratios) and real wastewater. The P, poly-hydroxyalkanoates (PHAs), dehydrogenase activity (DHA), polyphosphate kinases (PPK), electron transfer system (ETS), and adenosine 5'-triphosphate (ATP) were determined as indicators. The highest P removal efficiencies were achieved at an anaerobic duration of 3, 4, and 6 h for 15, 30, and 60% VFA ratio in synthetic wastewater. The amount of the released P and stored PHAs can be manipulated by different anaerobic durations, but the P removal efficiency cannot be guaranteed with higher stored PHAs. Additionally, the energy metabolism confirmed the significance of anaerobic duration extension on microbial activity. The highest values of four indicators were all achieved at anaerobic duration of 4 h with 30% VFAs ratio which achieved the highest P removal efficiency. Real wastewater experiments also proved the reproductivity of these results. We defined this phenomenon as the "hunger response" where microorganisms responded to suppression (anaerobic duration extension) with higher activity after the end of the anaerobic condition. These results can provide references for better design and operation of biological phosphorus removal in RAAO process.


Asunto(s)
Fósforo , Aguas Residuales , Anaerobiosis , Fósforo/metabolismo , Reactores Biológicos , Nitrógeno/metabolismo , Aguas del Alcantarillado , Eliminación de Residuos Líquidos/métodos
5.
Bioresour Technol ; 385: 129426, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37392965

RESUMEN

To achieve energy-efficient treatment of the rural wastewater with satisfying performance, a novel immersed rotating self-aerated biofilm reactor (iRSABR) was proposed in this study. The iRSABR system showed better biofilm renewal performance and higher microbial activity. The effect of different regulation strategies on the iRSABR system was investigated in this study. The 70% immersion ratio and 4 r/min rotation speed (stage III) exhibited the best performance, with a total nitrogen removal efficiency of 86% and a simultaneous nitrification-denitrification (SND) rate of 76%, along with the highest electron transport system activity. The nitrogen removal pathway revealed that the SND was achieved through autotrophic/heterotrophic nitrification and aerobic/anoxic denitrification. The regulation strategy in the iRSABR system established a synergistic microbial community with main functional bacteria of nitrification (Nitrosomonas), anoxic denitrification (Flavobacterium, Pseudoxanthomonas), and aerobic denitrification (Thauera). This study highlighted the feasibility and adaptability of the iRSABR system toward energy-efficient rural wastewater treatment.


Asunto(s)
Desnitrificación , Nitrógeno , Nitrógeno/metabolismo , Reactores Biológicos , Nitrificación , Biopelículas
6.
Bioresour Technol ; 369: 128513, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36538963

RESUMEN

Decentralized wastewater pollution in rural areas has become a serious problem for the rural environment. In this study, a novel rotating self-aerated biofilm reactor was developed for decentralized wastewater treatment without any aeration equipment. After the long-term operation of 110 days, the removal efficiency reached to 96.06 % (COD), 98.06 % (NH4+-N), and 62.58 % (TN) in the last phase. Under high dissolved oxygen level, the simultaneous nitrification-denitrification (SND) maintained at a stable ratio of 62.53 % and the denitrification rates reached over 28.37 mg/L/h. With the organic loading rate increased, key nitrogen functional bacterial communities such as anoxic denitrifiers (Thiothrix, Flavobacterium, Pseudoxanthomonas, Aquimonas and Azoarcus) and aerobic denitrifiers (Hydrogenophaga, Zoogloea and Terrimonas) increased obviously. Overall, microbial analysis and nitrogen metabolism pathway indicated that an integration of SND process was achieved in this single reactor by the combined action of nitrification, denitrification and comammox without any aeration equipment.


Asunto(s)
Desnitrificación , Nitrificación , Reactores Biológicos/microbiología , Biopelículas , Nitrógeno/metabolismo , Eliminación de Residuos Líquidos
7.
Biomed Environ Sci ; 35(7): 613-621, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35945176

RESUMEN

Objective: To analyze the prevalence of dry and wet age-related macular degeneration (AMD) in patients with diabetes, hypertension and hyperlipidemia, and to analyze the risk factors for AMD. Methods: A population-based cross-sectional epidemiologic study was conducted involving 14,440 individuals. We assessed the prevalence of dry and wet AMD in diabetic and non-diabetic subjects and analyzed the risk factors for AMD. Results: The prevalence of wet AMD in diabetic and non-diabetic patients was 0.3% and 0.5%, respectively, and the prevalence of dry AMD was 17% and 16.4%, respectively. The prevalence of wet AMD in healthy, hypertensive, hyperlipidemic, and hypertensive/hyperlipidemic populations was 0.5%, 0.3%, 0.2%, and 0.7%, respectively. The prevalence of dry AMD in healthy, hypertensive, hyperlipidemic, and hypertensive/hyperlipidemic populations was 16.6%, 16.2%, 15.2%, and 17.2%, respectively. Age, sex, body mass index, and use of hypoglycemic drugs or lowering blood pressure drugs were corrected in the risk factor analysis of AMD. Diabetes, diabetes/hypertension, diabetes/hyperlipidemia, and diabetes/hypertension/hyperlipidemia were analyzed. None of the factors analyzed in the current study increased the risk for the onset of AMD. Conclusion: There was no significant difference in the prevalence of wet and dry AMD among diabetic and non-diabetic subjects. Similarly, there was no significant difference in the prevalence of wet and dry AMD among subjects with hypertension and hyperlipidemia. Diabetes co-existing with hypertension and hyperlipidemia were not shown to be risk factors for the onset of dry AMD.


Asunto(s)
Diabetes Mellitus , Hiperlipidemias , Hipertensión , Degeneración Macular , Estudios Transversales , Diabetes Mellitus/epidemiología , Humanos , Hiperlipidemias/complicaciones , Hiperlipidemias/epidemiología , Hipertensión/complicaciones , Hipertensión/epidemiología , Degeneración Macular/epidemiología , Degeneración Macular/etiología , Factores de Riesgo
8.
Bioresour Technol ; 358: 127405, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35660455

RESUMEN

An intermittently-aerated moving bed biofilm reactor (MBBR) was proposed for nitrogen and carbon removal from low C/N synthetic rural wastewater. In purposes of low energy consumption and costs, the intermittent aeration modes were changed and the dissolved oxygen was reduced gradually during the operation. The results showed that effluent concentrations of ammonia nitrogen and chemical oxygen demand were lower than 15 and 50 mg/L, respectively, even under microaerobic condition (0.1-1.0 mg/L). Meanwhile, the simultaneous nitrification-denitrification was achieved by intermittent aeration. The activity of functional bacteria was still high and the proportion of autotrophic biomass increased significantly under intermittent micro-aeration mode, which improved the nitrification performance. Aerobic denitrifier Hydrogenophaga, anoxic denitrifier Thiothrix, and heterotrophic nitrifier such as Rhodobacter were enriched in the intermittently micro-aerated MBBR, which will provide an applicable solution for rural wastewater treatment under low C/N and costs.


Asunto(s)
Biopelículas , Purificación del Agua , Reactores Biológicos , Desnitrificación , Nitrificación , Nitrógeno , Oxígeno , Eliminación de Residuos Líquidos , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...