Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 52(40): 10500-4, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-23943611

RESUMEN

POM and circumstance: Nanometer-sized polyoxometalates (POMs) bring a new direction to anion-templated supramolecular chemistry. The Keggin (left) and Dawson-type (right) polyoxoanions direct the assembly of giant metallomacrocycles through an array of weak hydrogen-bonding interactions. The concerted action of multiple hydrogen bonds keeps the templating guests embedded within the hosts, even in the solution state.

2.
Dalton Trans ; 41(33): 9867-70, 2012 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-22510784

RESUMEN

A polyoxometalate-based {Mn(III)(3)Mn(IV)} single-molecule magnet exhibits a large axial anisotropy (D = -0.86 cm(-1)) resulting from a near-parallel alignment of Jahn-Teller axes. Its rigorous three-fold symmetry (i.e. rhombicity E→ 0) and increased intercluster separation via co-crystallization effectively hamper quantum tunnelling of the magnetization.

3.
Chem Commun (Camb) ; 48(9): 1218-20, 2012 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-22094959

RESUMEN

Ligand modification transforms a polyoxometalate-anchored cubane-type [Mn(III)(3)Mn(IV)O(4)] core into a centrosymmetric [Mn(III)(6)Mn(IV)O(8)] di-cubane cluster, and restores the slow magnetization relaxation characteristics typical for [Mn(4)O(4)] cubane-based single-molecule magnets.

4.
J Phys Condens Matter ; 23(38): 386003, 2011 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-21900736

RESUMEN

We investigate the dynamical behavior of finite rings of classical spin vectors interacting via nearest-neighbor isotropic exchange in an external magnetic field. Our approach is to utilize the solutions of a continuum version of the discrete spin equations of motion (EOM) which we derive by assuming continuous modulations of spin wave solutions of the EOM for discrete spins. This continuum EOM reduces to the Landau-Lifshitz equation in a particular limiting regime. The usefulness of the continuum EOM is demonstrated by the fact that the time-evolved numerical solutions of the discrete spin EOM closely track the corresponding time-evolved solutions of the continuum equation. It is of special interest that our continuum EOM possesses soliton solutions, and we find that these characteristics are also exhibited by the corresponding solutions of the discrete EOM. The robustness of solitons is demonstrated by considering cases where initial states are truncated versions of soliton states and by numerical simulations of the discrete EOM equations when the spins are coupled to a heat bath at finite temperatures.

5.
Chem Commun (Camb) ; 47(22): 6251-3, 2011 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-21552574

RESUMEN

Hexametallic chromium(III) chains can act as fluoride donor ligands to lanthanide ions giving {(Cr(6))Ln(x)}(n) complexes; preliminary spectroscopic studies are reported.

7.
Chem Commun (Camb) ; 47(11): 3066-8, 2011 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-21308138

RESUMEN

The assembly of a tetradeca-manganese magnetic cluster [Mn(14)W(48)O(192)H(20)](26-), containing two high spin Mn(7) cores and supported exclusively by isopolytungstate ligands, demonstrates the promising perspective of using "defect" isopolyanions as ligands/synthons to construct large aggregated structures and model the surface deposition of molecular magnets.

9.
Dalton Trans ; 39(20): 4687-92, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-21488313

RESUMEN

The Heisenberg model provides a simple but powerful theoretical platform for modelling magnetic molecules. In this article, we demonstrate that--despite its simplicity--an isotropic Heisenberg model successfully provides a comprehensive description of the magnetic properties of the {Fe8}-cubane and the {Cr12Cu2} magnetic molecules. However, in order to achieve this success, it is necessary to employ a variety of sophisticated experimental and theoretical techniques. These include the use of pulsed-field measurements to observe a high-field (41 T) ground-state level crossing in the {Fe8}-cubane system, and tunnel-diode oscillator measurements, which we use to observe excited-state level crossings in the {Cr12Cu2} ring. For these two systems, the theoretical modelling was carried out using matrix diagonalization and quantum Monte Carlo calculations, respectively.

10.
Chem Commun (Camb) ; (23): 3351-3, 2009 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-19503867

RESUMEN

The deliberate synthesis of the Keplerate [K(20) subset{(W)W(5)O(21)(SO(4))}(12)(VO)(30)(SO(4))(H(2)O)(63)](18-) with 20 pores all closed by K(+) in a supramolecular fashion proves that it is possible to follow new routes in polyoxotungstate chemistry based on pentagonal {(W)W(5)}-type units and to tune magnetic exchange couplings in {(M)M(5)}(12)M'(30) type Keplerates.

13.
Chemistry ; 12(32): 8267-75, 2006 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-17009364

RESUMEN

The synthesis, structure, EPR, and magnetic studies of two dodecanuclear heterometallic cyclic clusters are reported. The compounds have the general formula [R(2)NH(2)](2)[Cr(10)Cu(2)F(14)(O(2)CCMe(3))(22)] (R=Me, 1 or iPr, 2). Both structures contain an array of metal centers which describe an approximate "hourglass", with an ammonium cation in the center of each half of the figure. The chromium sites are all six-coordinate, with the two copper sites five-coordinate. The majority of metal-metal edges are bridged by a single fluoride and two pivalate ligands, while two Cr--Cu edges are bridged by a single fluoride and a single pivalate. Magnetic studies show that 1 and 2 exhibit similar (but not identical) behavior, which can be attributed to ten antiferromagnetic and two ferromagnetic exchange interactions around the ring which gives an S=0 ground state. Quantum Monte Carlo calculations have been used to quantify the exchange interactions by successfully simulating the susceptibility for the full temperature range and thus clarifying the distinction between 1 and 2. EPR spectroscopy shows signals due to excited states, and a variable-temperature study has provided an estimate of the energy gap between the first excited state (S=1) and second excited state (S=2) for 1 that is consistent with the value obtained using the QMC method.

14.
Chemistry ; 12(35): 8961-8, 2006 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-17009372

RESUMEN

The synthesis and structural characterization of a nonanuclear FeIII cage complex is reported. The nine iron centers in [Fe9(mu3-O)4(O3PPh)3(O2CCMe3)13] lie on the vertices of an incomplete icosahedron, with the P atoms of triphenylphosphonate at the other three vertices. The paramagnetic core therefore describes a tridiminished icosahedron. Magnetic studies suggest an S=1/2 ground state for the molecule. Analysis of exchange paths and the susceptibility data point to the interpretation that the cluster can be divided into two nearly decoupled sections: an {Fe6O3} section, with an S=0 ground state, in which three oxo-centered triangles bound a central triangle that is not oxo-centered; and an {Fe3O} triangle with S=1/2. The analysis of the susceptibility data leads to a Heisenberg model based on three significant antiferromagnetic exchange interactions, with values of 173.7 cm-1 in the {Fe3O} triangle, and 30.9 and 19.1 cm-1 within the {Fe6O3} section, while the exchange between them is <1 cm-1. With these assignments, the theoretical low-temperature differential susceptibility is also in very good agreement with measurements up to 50 T. Magnetic measurements in the milli-kelvin range reveal striking hysteresis loops and magnetization reversals associated with a Landau-Zener-Stückelberg (LZS) transition as enhanced by the occurrence of a phonon bottleneck.

15.
Phys Rev Lett ; 94(20): 207203, 2005 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-16090279

RESUMEN

The observation of hysteresis effects in single molecule magnets like Mn12-acetate has initiated ideas of future applications in storage technology. The appearance of a hysteresis loop in such compounds is an outcome of their magnetic anisotropy. In this Letter we report that magnetic hysteresis occurs in a spin system without any anisotropy, specifically where spins mounted on the vertices of an icosahedron are coupled by antiferromagnetic isotropic nearest-neighbor Heisenberg interaction giving rise to geometric frustration. At T = 0 this system undergoes a first-order metamagnetic phase transition at a critical field Bc between two distinct families of ground state configurations. The metastable phase of the system is characterized by a temperature and field dependent survival probability distribution.

17.
Phys Rev Lett ; 94(1): 017205, 2005 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-15698128

RESUMEN

We identify a class of zero-dimensional classical and quantum Heisenberg spin systems exhibiting anomalous behavior in an external magnetic field B similar to that found for the geometrically frustrated kagome lattice of classical spins. Our calculations for the isotropic Heisenberg model show the emergence of a pronounced minimum in the differential susceptibility dM/dB at B(sat)/3 as the temperature T is raised from 0 K for structures based on corner-sharing triangles, specifically the octahedron, cuboctahedron, and icosidodecahedron. As the first experimental evidence we note that the giant Keplerate magnetic molecule {Mo(72)Fe(30)} (Fe(3+) ions on the 30 vertices of an icosidodecahedron) exhibits this behavior. For low T when B approximately B(sat)/3 two competing families of spin configurations exist of which one behaves magnetically "stiff" leading to a reduction of dM/dB.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA