Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(10)2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38794632

RESUMEN

Decreasing oil resources creates the need to search for raw materials in the biosphere, which can be converted into polyols suitable for obtaining polyurethane foams (PUF). One such low-cost and reproducible biopolymer is cellulose. There are not many examples of cellulose-derived polyols due to the sluggish reactivity of cellulose itself. Recently, cellulose and its hydroxypropyl derivatives were applied as source materials to obtain polyols, further converted into biodegradable rigid polyurethane foams (PUFs). Those PUFs were flammable. Here, we describe our efforts to modify such PUFs in order to decrease their flammability. We obtained an ester from diethylene glycol and phosphoric(III) acid and used it as a reactive flame retardant in the synthesis of polyol-containing hydroxypropyl derivative of cellulose. The cellulose-based polyol was characterized by infrared spectra (IR) and proton nuclear magnetic resonance (1H-NMR) methods. Its properties, such as density, viscosity, surface tension, and hydroxyl numbers, were determined. Melamine was also added to the foamed composition as an additive flame retardant, obtaining PUFs, which were characterized by apparent density, water uptake, dimension stability, heat conductance, compressive strength, and heat resistance at 150 and 175 °C. Obtained rigid PUFs were tested for flammability by determining oxygen index, horizontal flammability test, and calorimetric analysis. Obtained rigid PUFs showed improved flammability resistance in comparison with non-modified PUFs and classic PUFs.

2.
Polymers (Basel) ; 15(14)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37514473

RESUMEN

Decreasing oil extraction stimulates attempts to use biologically available sources to produce polyols, which are the basic components for obtaining polyurethane foams. Plants are inexhaustible source of oils, sugars, starches, and cellulose. Similar substrates to obtain polyols are chitosans. Commercially available modified chitosans are soluble in water, which gives them the possibility to react with hydroxyalkylating agents. We used a water-soluble chitosan previously to obtain polyols suitable for producing rigid polyurethane foams. Here, we described hydroxyalkylation of a low-molecular-weight chitosan (oligomeric chitosan) with glycidol and ethylene carbonate to obtain polyols. The polyols were isolated and studied in detail by IR, 1H-NMR, and MALDI-ToF methods. Their properties, such as density, viscosity, surface tension, and hydroxyl numbers, were determined. The progress of the hydroxyalkylation reaction of water-soluble chitosan and chitosan oligomer with glycidol was compared in order to characterize the reactivity and mechanism of the process. We found that the hydroxyalkylation of chitosan with glycidol in glycerol resulted in the formation of a multifunctional product suitable for further conversion to polyurethane foams with favorable properties. The straightforward hydroxyalkylation of chitosan with glycidol was accompanied by the oligomerization of glycidol. The hydroxyalkylation of chitosan with glycidol in the presence of ethylene carbonate was accompanied by minor hydroxyalkylation of chitosan with ethylene carbonate. The chosen polyols were used to obtain rigid polyurethane foams which were characterized by physical parameters such as apparent density, water uptake, dimension stability, heat conductance, compressive strength, and heat resistance at 150 and 175 °C. The properties of polyurethane foams obtained from chitosan-oligomer and water-soluble-chitosan sources were compared. Polyurethane foams obtained from polyols synthesized in the presence of glycerol had advantageous properties such as low thermal conductivity, enhanced thermal resistance, dimensional stability, low water uptake, and high compressive strength, growing remarkably upon thermal exposure.

3.
Polymers (Basel) ; 15(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36987267

RESUMEN

At present, majority of polyols used in the synthesis of polyurethane foams are of petrochemical origin. The decreasing availability of crude oil imposes the necessity to convert other naturally existing resources, such as plant oils, carbohydrates, starch, or cellulose, as substrates for polyols. Within these natural resources, chitosan is a promising candidate. In this paper, we have attempted to use biopolymeric chitosan to obtain polyols and rigid polyurethane foams. Four methods of polyol synthesis from water-soluble chitosan functionalized by reactions of hydroxyalkylation with glycidol and ethylene carbonate with variable environment were elaborated. The chitosan-derived polyols can be obtained in water in the presence of glycerol or in no-solvent conditions. The products were characterized by IR, 1H-NMR, and MALDI-TOF methods. Their properties, such as density, viscosity, surface tension, and hydroxyl numbers, were determined. Polyurethane foams were obtained from hydroxyalkylated chitosan. The foaming of hydroxyalkylated chitosan with 4,4'-diphenylmethane diisocyanate, water, and triethylamine as catalysts was optimized. The four types of foams obtained were characterized by physical parameters such as apparent density, water uptake, dimension stability, thermal conductivity coefficient, compressive strength, and heat resistance at 150 and 175 °C. It has been found that the obtained materials had most of the properties similar to those of classic rigid polyurethane foams, except for an increased thermal resistance up to 175 °C. The chitosan-based polyols and polyurethane foams obtained from them are biodegradable: the polyol is completely biodegraded, while the PUF obtained thereof is 52% biodegradable within 28 days in the soil biodegradation oxygen demand test.

4.
Polymers (Basel) ; 14(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36235991

RESUMEN

Hydroxyalkylation of the mixture of metasilicic acid and cellulose with glycidol and ethylene carbonate leads to a polyol suitable to obtain rigid polyurethane foams. The composition, structure, and physical properties of the polyol were studied in detail. The obtained foams have apparent density, water absorption, and polymerization shrinkage, as well as heat conduction coefficients similar to conventional, rigid polyurethane foams. The polyols and foams obtained from environmentally unobtrusive substrates are easily biodegradable. Additionally, the obtained foams have high thermal resistance and are self-extinguishing. Thermal exposure of the foams leads to an increase of the compressive strength of the material and further reduces their flammability, which renders them suitable for use as heat insulating materials.

5.
Int J Mol Sci ; 22(1)2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33374754

RESUMEN

Two polyol raw materials were obtained in the conducted research, one based on metasilicic acid (MSA), the other based on poly(lactic acid) (PLA) waste. The obtained polyols were characterized in terms of their applicability for the production of rigid polyurethane foams (RPUFs). Their basic analytical properties (hydroxyl number, acid number, elemental analysis) and physicochemical properties (density, viscosity) were determined. The assumed chemical structure of the obtained new compounds was confirmed by performing FTIR and 1H NMR spectroscopic tests. Formulations for the synthesis of RPUFs were developed on the basis of the obtained research results. A mixture of polyols based on MSA and PLA in a weight ratio of 1:1 was used as the polyol component in the polyurethane formulation. The reference foam in these tests was a foam that was synthesized only on the basis of MSA-polyol. The obtained RPUFs were tested for basic functional properties (apparent density, compressive strength, water absorption, thermal conductivity coefficient etc.). Susceptibility to biodegradation in soil environment was also tested. It was found that the use of mixture of polyols based on MSA and PLA positively affected the properties of the obtained foam. The polyurethane foam based on this polyol mixture showed good thermal resistance and significantly reduced flammability in comparison with the foam based MSA-polyol. Moreover, it showed higher compressive strength, lower thermal conductivity and biodegradability in soil. The results of the conducted tests confirmed that the new foam was characterized by very good performance properties. In addition, this research provides information on new waste management opportunities and fits into the doctrine of sustainable resource management offered by the circular economy.


Asunto(s)
Plásticos Biodegradables/síntesis química , Poliésteres/química , Polímeros/química , Poliuretanos/química , Fuerza Compresiva , Silicatos/química
6.
Polymers (Basel) ; 11(11)2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31694273

RESUMEN

This article raised the issue of studies on the use of new bio-polyol based on white mustard seed oil and 2,2'-thiodiethanol (3-thiapentane-1,5-diol) for the synthesis of rigid polyurethane/polyisocyanurate (RPU/PIR) foams. For this purpose, new formulations of polyurethane materials were prepared. Formulations contained bio-polyol content from 0 to 0.4 chemical equivalents of hydroxyl groups. An industrial flame retardant, tri(2-chloro-1-methylethyl) phosphate (Antiblaze TCMP), was added to half of the formulations. Basic foaming process parameters and functional properties, such as apparent density, compressive strength, brittleness, absorbability and water absorption, aging resistance, thermal conductivity coefficient λ, structure of materials, and flammability were examined. The susceptibility of the foams to biodegradation in soil was also examined. The increase in the bio-polyol content caused a slight increase in processing times. Also, it was noted that the use of bio-polyol had a positive effect on the functional properties of obtained RPU/PIR foams. Foams modified by bio-polyol based on mustard seed oil showed lower apparent density, brittleness, compressive strength, and absorbability and water absorption, as well as thermal conductivity, compared to the reference (unmodified) foams. Furthermore, the obtained materials were more resistant to aging and more susceptible to biodegradation.

7.
Int J Anal Chem ; 2019: 2879869, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31467548

RESUMEN

Unsaturated polyester resins are usually processed using a curing system consisting of initiator and accelerator introduced into the resin. Actually, the producers apply built-in amine accelerators which can be named as preaccelerators. Commonly used preaccelerators for unsaturated resins are tertiary aromatic amines of which incorporation into resin structure may bring better stability. It also causes shorter gelation time of resins because of formation of active RO• radicals that initiate polymerization. Investigated radical reactions are too fast and there is no possibility of freezing it (in unsaturated polyester) to measure with Electron Paramagnetic Resonance (EPR). The analytical methodology on radicals activity measurement in model of preaccelerated unsaturated polyester resin reaction with methylene blue as indicator was presented. Using methylene blue as indicator allows us to determine the activity of forming radicals in three-component system (cobalt salt, amine preaccelerator, peroxide, or hydroperoxide) during the reaction of radicals generating. Changes in radicals activity using methylene blue as interceptor can be observed by changes of transmittance in the UV-Vis spectrum in the range 400-950 nm.

8.
Acta Chim Slov ; 64(4): 858-864, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29318302

RESUMEN

The one-pot multicomponent synthesis of oligoetherols containing azacycles is described. They were obtained by reaction of isocyanuric, barbituric, or uric acid or melamine with glycidol and alkylene carbonates. The isolated products were characterized by physical methods and their properties were compared with the same compounds obtained in twostep protocol. The oligoetherols with 1,3,5-triazine ring obtained by both methods were then used to form polyurethane foams and their properties were compared.

9.
Acta Chim Slov ; 63(1): 77-87, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26970791

RESUMEN

Melamine polyphosphate, MPP was applied as reactive and additive flame retardant for thermally resistant polyurethane foams. MPP was hydroxyalkylated with ethylene and propylene carbonates to get oligoetherols with 1,3,5-triazine ring and phosphorus. The structure and physical properties of the products were studied. The polyurethane foams, PUFs obtained from this oligoetherols were self-distinguishing. The addition of powdered MPP into foaming mixture resulted in further decrease of flammability modified PUFs. The MPP-modified PUFs were characterized by physical methods adequate to thermal resistance and flammability of the PUFs. The best MPP-modified PUF showed oxygen index 24.6. All the modified PUFs were remarkably thermally resistant; they could stand long lasting thermal exposure even at 200 °C.

10.
Eur J Pharm Sci ; 59: 1-11, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24746680

RESUMEN

HPLC analysis of drug products containing bisoprolol fumarate and lactose revealed the presence of N-formylbisoprolol, which is a final product of the Maillard reaction. Formulations containing secondary amines and reducing carbohydrates are prone to the condensation of amine and carbonyl functional groups and formation of glycosylamines in pharmaceutically relevant conditions. Further rearrangement occurs in the presence of a nucleophile and leads to the formation of 1-deoxy-1-amino-2-ketose also known as the Amadori Rearrangement Product (ARP). The influence of water content, carbohydrate, and lubricant types on the reaction rate was tested. The reaction progress was monitored by HPLC and UV-Vis spectrophotometry. The structures of intermediates were confirmed by the LC/MS(2) analysis. N-formylbisoprolol - the final reaction product - was synthesised and characterised by LC/MS(2), H(1) and C(13) NMR.


Asunto(s)
Antagonistas de Receptores Adrenérgicos beta 1/química , Bisoprolol/química , Glucosa/química , Lactosa/química , Maltosa/química , Cromatografía Líquida de Alta Presión , Estabilidad de Medicamentos , Espectroscopía de Resonancia Magnética , Reacción de Maillard , Espectrometría de Masas , Oxidación-Reducción , Espectrofotometría Ultravioleta , Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA