Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Semin Cell Dev Biol ; 111: 67-73, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32654970

RESUMEN

Until the discovery of human embryonic stem cells and human induced pluripotent stem cells, biotechnology companies were severely limited in the number of human tissues that they could model in large-scale in vitro studies. Until this point, companies have been limited to immortalized cancer lines or a small number of primary cell types that could be extracted and expanded. Nowadays, protocols continue to be developed in the stem cell field, enabling researchers to model an ever-growing library of cell types in controlled, large-scale screens. One differentiation method in particular- cerebral organoids- shows substantial potential in the field of neuroscience and developmental neurobiology. Cerebral organoid technology is still in an early phase of development, and there are several challenges that are currently being addressed by academic and industrial researchers alike. Here we briefly describe some of the early adopters of cerebral organoids, several of the challenges that they are likely facing, and various technologies that are currently being implemented to overcome them.


Asunto(s)
Descubrimiento de Drogas/métodos , Drogas en Investigación/farmacología , Modelos Biológicos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Organoides/efectos de los fármacos , Sistemas CRISPR-Cas , Diferenciación Celular , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Drogas en Investigación/química , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Aprendizaje Automático , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/química , Organoides/metabolismo , Organoides/patología , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos
2.
Cell ; 174(2): 363-376.e16, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29887381

RESUMEN

Visualization of the transcriptome and the nuclear organization in situ has been challenging for single-cell analysis. Here, we demonstrate a multiplexed single-molecule in situ method, intron seqFISH, that allows imaging of 10,421 genes at their nascent transcription active sites in single cells, followed by mRNA and lncRNA seqFISH and immunofluorescence. This nascent transcriptome-profiling method can identify different cell types and states with mouse embryonic stem cells and fibroblasts. The nascent sites of RNA synthesis tend to be localized on the surfaces of chromosome territories, and their organization in individual cells is highly variable. Surprisingly, the global nascent transcription oscillated asynchronously in individual cells with a period of 2 hr in mouse embryonic stem cells, as well as in fibroblasts. Together, spatial genomics of the nascent transcriptome by intron seqFISH reveals nuclear organizational principles and fast dynamics in single cells that are otherwise obscured.


Asunto(s)
Hibridación Fluorescente in Situ/métodos , Transcriptoma , Animales , Dominio Catalítico , Línea Celular , Cromosomas/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Intrones , Ratones , Microscopía Fluorescente , Microscopía por Video , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN Largo no Codificante/genética , ARN Mensajero/genética , Análisis de la Célula Individual
4.
Neuron ; 94(4): 752-758.e1, 2017 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-28521130

RESUMEN

We recently applied multiplexed seqFISH to profile expressions of hundreds of genes at the single-cell level in situ (Shah et al., 2016) and provided a map of spatial heterogeneity within each subregion, reconciling previously contradictory descriptions of CA1 at lower spatial resolutions. The accompanying Matters Arising paper from Cembrowski and Spruston questions the spatial organization described for CA1 and raise concerns that the results were determined only by high expression, non-barcoded genes. In response, we show that the same robust spatial structure is observed when only lower average abundance genes measured by barcoded seqFISH are used. In fact, many genes with low average abundance are informative of cell states because they can be expressed strongly in specific subpopulation of cells. Our discussion highlights the importance of single-cell in situ analysis in resolving cellular and spatial heterogeneities otherwise lost in population-averaged measurements. This Matters Arising Response paper addresses the Cembrowski and Spruston (2017) Matters Arising paper, published concurrently in this issue of Neuron.


Asunto(s)
Hipocampo/citología , Neuronas
5.
Neuron ; 92(2): 342-357, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27764670

RESUMEN

Identifying the spatial organization of tissues at cellular resolution from single-cell gene expression profiles is essential to understanding biological systems. Using an in situ 3D multiplexed imaging method, seqFISH, we identify unique transcriptional states by quantifying and clustering up to 249 genes in 16,958 cells to examine whether the hippocampus is organized into transcriptionally distinct subregions. We identified distinct layers in the dentate gyrus corresponding to the granule cell layer and the subgranular zone and, contrary to previous reports, discovered that distinct subregions within the CA1 and CA3 are composed of unique combinations of cells in different transcriptional states. In addition, we found that the dorsal CA1 is relatively homogeneous at the single cell level, while ventral CA1 is highly heterogeneous. These structures and patterns are observed using different mice and different sets of genes. Together, these results demonstrate the power of seqFISH in transcriptional profiling of complex tissues.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Región CA3 Hipocampal/metabolismo , Giro Dentado/metabolismo , Neuronas/metabolismo , ARN Mensajero/metabolismo , Transcriptoma , Animales , Secuencia de Bases , Femenino , Perfilación de la Expresión Génica , Hibridación Fluorescente in Situ , Ratones , Ratones Endogámicos C57BL
6.
Development ; 143(15): 2862-7, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27342713

RESUMEN

Accurate and robust detection of mRNA molecules in thick tissue samples can reveal gene expression patterns in single cells within their native environment. Preserving spatial relationships while accessing the transcriptome of selected cells is a crucial feature for advancing many biological areas - from developmental biology to neuroscience. However, because of the high autofluorescence background of many tissue samples, it is difficult to detect single-molecule fluorescence in situ hybridization (smFISH) signals robustly in opaque thick samples. Here, we draw on principles from the emerging discipline of dynamic nucleic acid nanotechnology to develop a robust method for multi-color, multi-RNA imaging in deep tissues using single-molecule hybridization chain reaction (smHCR). Using this approach, single transcripts can be imaged using epifluorescence, confocal or selective plane illumination microscopy (SPIM) depending on the imaging depth required. We show that smHCR has high sensitivity in detecting mRNAs in cell culture and whole-mount zebrafish embryos, and that combined with SPIM and PACT (passive CLARITY technique) tissue hydrogel embedding and clearing, smHCR can detect single mRNAs deep within thick (0.5 mm) brain slices. By simultaneously achieving ∼20-fold signal amplification and diffraction-limited spatial resolution, smHCR offers a robust and versatile approach for detecting single mRNAs in situ, including in thick tissues where high background undermines the performance of unamplified smFISH.


Asunto(s)
Hidrogel de Polietilenoglicol-Dimetacrilato/química , ARN/genética , Animales , Embrión no Mamífero/metabolismo , Hibridación Fluorescente in Situ , Pez Cebra
7.
Cell ; 158(4): 945-958, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-25088144

RESUMEN

Understanding the structure-function relationships at cellular, circuit, and organ-wide scale requires 3D anatomical and phenotypical maps, currently unavailable for many organs across species. At the root of this knowledge gap is the absence of a method that enables whole-organ imaging. Herein, we present techniques for tissue clearing in which whole organs and bodies are rendered macromolecule-permeable and optically transparent, thereby exposing their cellular structure with intact connectivity. We describe PACT (passive clarity technique), a protocol for passive tissue clearing and immunostaining of intact organs; RIMS (refractive index matching solution), a mounting media for imaging thick tissue; and PARS (perfusion-assisted agent release in situ), a method for whole-body clearing and immunolabeling. We show that in rodents PACT, RIMS, and PARS are compatible with endogenous-fluorescence, immunohistochemistry, RNA single-molecule FISH, long-term storage, and microscopy with cellular and subcellular resolution. These methods are applicable for high-resolution, high-content mapping and phenotyping of normal and pathological elements within intact organs and bodies.


Asunto(s)
Células/clasificación , Imagenología Tridimensional/métodos , Análisis de la Célula Individual , Imagen de Cuerpo Entero , Animales , Encéfalo/citología , Células/metabolismo , Fluorescencia , Ratones , Microscopía Confocal/métodos , Microscopía Electrónica de Rastreo , Fenotipo
9.
Nat Methods ; 9(7): 743-8, 2012 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-22660740

RESUMEN

Fluorescence microscopy is a powerful quantitative tool for exploring regulatory networks in single cells. However, the number of molecular species that can be measured simultaneously is limited by the spectral overlap between fluorophores. Here we demonstrate a simple but general strategy to drastically increase the capacity for multiplex detection of molecules in single cells by using optical super-resolution microscopy (SRM) and combinatorial labeling. As a proof of principle, we labeled mRNAs with unique combinations of fluorophores using fluorescence in situ hybridization (FISH), and resolved the sequences and combinations of fluorophores with SRM. We measured mRNA levels of 32 genes simultaneously in single Saccharomyces cerevisiae cells. These experiments demonstrate that combinatorial labeling and super-resolution imaging of single cells is a natural approach to bring systems biology into single cells.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/métodos , Análisis de la Célula Individual/métodos , Biología de Sistemas/métodos , Colorantes Fluorescentes , Perfilación de la Expresión Génica , Procesamiento de Imagen Asistido por Computador/instrumentación , Hibridación Fluorescente in Situ , Microscopía Fluorescente/instrumentación , ARN Mensajero/genética , Saccharomyces cerevisiae/genética , Análisis de la Célula Individual/instrumentación , Biología de Sistemas/instrumentación
10.
Plant Physiol ; 157(1): 175-87, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21768649

RESUMEN

We have used propidium iodide (PI) to investigate the dynamic properties of the primary cell wall at the apex of Arabidopsis (Arabidopsis thaliana) root hairs and pollen tubes and in lily (Lilium formosanum) pollen tubes. Our results show that in root hairs, as in pollen tubes, oscillatory peaks in PI fluorescence precede growth rate oscillations. Pectin forms the primary component of the cell wall at the tip of both root hairs and pollen tubes. Given the electronic structure of PI, we investigated whether PI binds to pectins in a manner analogous to Ca(2+) binding. We first show that Ca(2+) is able to abrogate PI growth inhibition in a dose-dependent manner. PI fluorescence itself also relies directly on the amount of Ca(2+) in the growth solution. Exogenous pectin methyl esterase treatment of pollen tubes, which demethoxylates pectins, freeing more Ca(2+)-binding sites, leads to a dramatic increase in PI fluorescence. Treatment with pectinase leads to a corresponding decrease in fluorescence. These results are consistent with the hypothesis that PI binds to demethoxylated pectins. Unlike other pectin stains, PI at low yet useful concentration is vital and specifically does not alter the tip-focused Ca(2+) gradient or growth oscillations. These data suggest that pectin secretion at the apex of tip-growing plant cells plays a critical role in regulating growth, and PI represents an excellent tool for examining the role of pectin and of Ca(2+) in tip growth.


Asunto(s)
Arabidopsis/metabolismo , Calcio/metabolismo , Pectinas/metabolismo , Raíces de Plantas/metabolismo , Polen/metabolismo , Propidio/metabolismo , Sitios de Unión , Fluorescencia , Magnesio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...