Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 128(20): 5055-5063, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38726555

RESUMEN

Molecular dynamics and transport coefficients change significantly around the so-called Arrhenius crossover in glass-forming systems. In this article, we revisit the dynamic processes occurring in a glass-forming macrocyclic crown thiaether MeBzS2O above its glass transition, revealing two crossover temperatures: TB at 309 and TA at 333 K. We identify the second one as the Arrhenius crossover that is closely related to the normal-to-supercooled liquid transition in this compound. We show that the transformation occurring at this point goes far beyond molecular dynamics (where the temperature dependence of structural relaxation times changes its character from activation-like to super-Arrhenius), being reflected also in the internal structure and diffraction pattern. In this respect, we found a twofold local organization of the nearest-neighbor molecules via weak van der Waals forces, without the formation of any medium-range order or mesophases. The nearest surrounding of each molecule evolves structurally in time due to the ongoing fast conformational changes. We identify several conformers of MeBzS2O, demonstrating that its lowest-energy conformation is preferred mainly at lower temperatures, i.e., in the supercooled liquid state. Its increased prevalence modifies locally the short-range intermolecular order and promotes vitrification. Consequently, we indicate that the Arrhenius transition is fuelled rather by conformational changes in this glass-forming macrocyclic crown thiaether, which is a different scenario from the so-far existing concepts. Our studies combine broadband dielectric spectroscopy (BDS), X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, molecular dynamics (MD) simulations, and density functional theory (DFT) calculations.

2.
J Phys Chem B ; 127(42): 9102-9110, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37846653

RESUMEN

A series of four alcohols, n-propanol and its halogen (Cl, Br, and I) derivatives, were selected to study the effects of variation in polarity and halogen-driven interactions on the hydrogen bonding pattern and supramolecular structure by means of experimental and theoretical methods. It was demonstrated on both grounds that the average strength of H-bonds remains the same but dissociation enthalpy, the size of molecular nanoassemblies, as well as long-range correlations between dipoles vary with the molecular weight of halogen atom. Further molecular dynamics simulations indicated that it is connected to the variation in the molecular order introduced by specific halogen-based hydrogen bonds and halogen-halogen interactions. Our results also provided important experimental evidence supporting the assumption of the transient chain model on the molecular origin of the structural process in self-assembling alcohols.

3.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36077212

RESUMEN

In this paper, we thoroughly investigated the physical stability of the anti-inflammatory drug etoricoxib, which has been reported earlier to be resistant to recrystallization in its glassy and supercooled states at ambient pressure. Our unique application of the standard refractometry technique showed that the supercooled liquid of the drug was able to recrystallize during isothermal experiments in atmospheric conditions. This enabled us to determine the crystallization onset timescale and nucleation energy barrier of etoricoxib for the first time. As the physical instability of etoricoxib requires working out an efficient method for improving the drug's resistance to recrystallization to maintain its amorphous form utility in potential pharmaceutical applications, we focused on finding a solution to this problem, and successfully achieved this purpose by preparing binary mixtures of etoricoxib with octaacetylmaltose. Our detailed thermal, refractometry, and molecular dynamics studies of the binary compositions near the glass transition revealed a peculiar behavior of the glass transition temperatures when changing the acetylated disaccharide concentration in the mixtures. Consequently, the anti-plasticization effect on the enhancement of physical stability could be excluded, and a key role for specific interactions in the improved resistance to recrystallization was expected. Invoking our previous results obtained for etoricoxib, the chemically similar drug celecoxib, and octaacetylmaltose, we formulated a hypothesis about the molecular mechanisms that may cause an impediment to crystal nuclei formation in the amorphous mixtures of etoricoxib with octaacetylmaltose. The most plausible scenario may rely on the formation of hydrogen-bonded heterodimers of the drug and excipient molecules, and the related drop in the population of the etoricoxib homodimers, which disables the nucleation. Nevertheless, this hypothesis requires further investigation. Additionally, we tested some widely discussed correlations between molecular mobility and crystallization properties, which turned out to be only partially satisfied for the examined mixtures. Our findings constitute not only a warning against manufacturing the amorphous form of pure etoricoxib, but also evidence for a promising outcome for the pharmaceutical application of the amorphous compositions with octaacetylmaltose.


Asunto(s)
Simulación de Dinámica Molecular , Vitrificación , Rastreo Diferencial de Calorimetría , Estabilidad de Medicamentos , Etoricoxib , Excipientes/química
4.
Eur Phys J E Soft Matter ; 45(8): 64, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35917038

RESUMEN

The tendency to crystallize was studied in the selected monohydroxy alcohols: 1-chloro-2-methyl-2-propanol, 1-chloro-2-propanol, 3-chloro-1-propanol, and 8-chloro-1-octanol. Performed calorimetric measurements have proved that the differences in structures of tested alcohols influence the tendency to crystallization. At a sufficiently fast heating rate, no crystallization was observed in the case of 1-chloro-2-propanol and 3-chloro-1-propanol, contrary to other two alcohols. The obtained results suggest that elongation of the alkyl chain or adding a methyl group to the hydrocarbon backbone increases the susceptibility to crystallization.


Asunto(s)
Alcoholes , Alcoholes/química , Cristalización , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...