Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Orthop Rev (Pavia) ; 8(2): 6445, 2016 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-27433303

RESUMEN

Magnesium-based interference screws may be an alternative in anterior/posterior cruciate ligament reconstruction. The well-known osteoconductive effects of biodegradable magnesium alloys may be useful. It was the purpose of this study to evaluate the biomechanical properties of a magnesium based interference screw and compare it to a standard implant. A MgYREZr-alloy interference screw and a standard implant (Milagro®; De Puy Mitek, Raynham, MA, USA) were used for graft fixation. Specimens were placed into a tensile loading fixation of a servohydraulic testing machine. Biomechanical analysis included pretensioning of the constructs at 20 N for 1 min following cyclic pretensioning of 20 cycles between 20 and 60 N. Biomechanical elongation was evaluated with cyclic loading of 1000 cycles between 50 and 200 N at 0.5 Hz. Maximum load to failure was 511.3±66.5 N for the Milagro® screw and 529.0±63.3 N for magnesium-based screw (ns, P=0.57). Elongations after preload, during cyclical loading and during failure load were not different between the groups (ns, P>0.05). Stiffness was 121.1±13.8 N/mm for the magnesium-based screw and 144.1±18.4 for the Milagro® screw (ns, P=0.32). MgYREZr alloy interference screws show comparable results in biomechanical testing to standard implants and may be an alternative for anterior cruciate reconstruction in the future.

2.
Mater Sci Eng C Mater Biol Appl ; 59: 1100-1109, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26652469

RESUMEN

The reconstruction of the anterior cruciate ligament is, for the most part, currently performed with interference screws made of titanium or degradable polymers. The aim of this study was to investigate the use of biodegradable magnesium interference screws for such a procedure because of their known biocompatibility and reported osteoconductive effects. The left tibiae of each of 18 rabbits were implanted with a magnesium-based (MgYREZr-alloy) screw, and another 18 with a titanium-based control. Each group was divided into observation periods of 4, 12 and 24weeks. After sacrifice, µCT scans were acquired to assess the amount of the gas liberated and the degradation rate of the implant. Histological evaluations were performed to investigate the local tissue response adjacent to the implant and to assess the status of the attachment between the tendon and the bone tissue. The µCT scans showed that liberation of gas was most prominent 4weeks after implantation and was significantly decreased by 24weeks. All screws remained in situ and formed a sufficient connection with the tendon and sufficient osseous integration at 24weeks. Histological evaluations showed neither inflammatory reactions nor necrosis of the tendon. The results of this pilot study in rabbits indicate that this magnesium-based interference screw should be considered as an alternative to conventional implant materials.


Asunto(s)
Reconstrucción del Ligamento Cruzado Anterior/instrumentación , Materiales Biocompatibles , Tornillos Óseos , Magnesio , Animales , Ligamento Cruzado Anterior/cirugía , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/uso terapéutico , Remodelación Ósea/efectos de los fármacos , Femenino , Magnesio/farmacología , Magnesio/uso terapéutico , Conejos
3.
Knee Surg Sports Traumatol Arthrosc ; 24(12): 3976-3981, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25246174

RESUMEN

PURPOSE: Degradable magnesium implants have received increasing interest in recent years. In anterior cruciate ligament reconstruction surgery, the well-known osteoconductive effects of biodegradable magnesium alloys may be useful. The aim of this study was to examine whether interference screws made of MgYREZr have comparable biomechanical properties to commonly used biodegradable screws and whether a different thread on the magnesium screw has an influence on the fixation strength. METHODS: Five magnesium (MgYREZr-alloy) screws were tested per group. Three different groups with variable thread designs (Designs 1, 2, and 3) were produced and compared with the commercially available bioabsorbable Bioacryl rapid polylactic-co-glycolic acid screw Milagro®. In vitro testing was performed in synthetic bone using artificial ligament fixed by an interference screw. The constructs were pretensioned with a constant load of 60 N for 30 s followed by 500 cycles between 60 N and 250 N at 1 Hz. Construct displacements between the 1st and 20th and the 21st and 500th cycles were recorded. After a 30 s break, a maximum load to failure test was performed at 1 mm/s measuring the maximum pull-out force. RESULTS: The maximum loads to failure of all three types of magnesium interference screws (Design 1: 1,092 ± 133.7 N; Design 2: 1,014 ± 103.3 N; Design 3: 1,001 ± 124 N) were significantly larger than that of the bioabsorbable Milagro® interference screw (786.8 ± 62.5 N) (p < 0.05). However, the greatest maximum load was found with magnesium screw Design 1. Except for a significant difference between Designs 1 and 2, there were no further significant differences among the four groups in displacement after the 20th cycle. CONCLUSIONS: Biomechanical testing showed higher pull-out forces for magnesium compared with a commercial polymer screw. Hence, they suggest better stability and are a potential alternative. The thread geometry does not significantly influence the stability provided by the magnesium implants. This study shows the first promising results of a degradable material, which may be a clinical alternative in the future.


Asunto(s)
Implantes Absorbibles , Aleaciones , Tornillos Óseos , Magnesio , Ligamento Cruzado Anterior/cirugía , Reconstrucción del Ligamento Cruzado Anterior/instrumentación , Fenómenos Biomecánicos , Humanos , Ácido Láctico , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
4.
J Biomater Appl ; 29(2): 291-302, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24522242

RESUMEN

Degradable magnesium alloys are promising biomaterials for orthopedic applications. The aim of this study was to evaluate the potential effects on both the synovial membrane (synovialis) and the synovial fluid (synovia) of the degradation products of a MgYREZr-pin implanted in the intercondylar femoral notch in a rabbit model. Thirty-six animals were randomized into two groups (MgYREZr or Ti6Al4V alloy) of 18 animals each. Each group was then divided into three subgroups with implantation periods of 1, 4, and 12 weeks, with six animals in each subgroup. The initial inflammatory reaction caused by the surgical trauma declined after 12 weeks of implantation, and elucidated a progressive recovery of the synovial membrane. Compared with control Ti6Al4V pins, there were no significant differences between the groups. However, after 12 weeks, recovery of the synovial membrane was more advanced in the titanium group, in which 92% showed no signs of synovitis, than in the magnesium group. A cytotoxicity test with L929 cells and human osteoblasts (HOB) was also conducted, according to EN ISO 10993-5/12, and no toxic leachable products were observed after 24 h of incubation. In conclusion, the MgYREZr alloy seems to be a suitable material for intra-articular degradable implants.

5.
Biomed Mater ; 8(4): 045012, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23813445

RESUMEN

Magnesium alloys are promising implant materials for use in orthopaedic applications. In the present study, screws made of the Mg-alloy ZEK100 (n = 12) were implanted in rabbit tibiae for four and six weeks, respectively. For degradation analysis, in vivo µ-computed tomography (µCT), a determination of the weight changes and SEM/EDX examinations of the screws were performed. Screw retention forces were verified by uniaxial pull-out tests. Additionally, soft-tissue biocompatibility was estimated using routine histological methods (H&E staining) and the immunohistological characterization of B- and T-cells. After six weeks, a 7.5% weight reduction occurred and, in dependence of the implant surrounding, the volume loss (µCT) reached 9.6% (screw head) and 5.0% for the part of the thread in the marrow cavity. Pull-out forces significantly decreased to 44.4% in comparison with the origin value directly after implantation. Soft tissue reactions were characterized by macrophage and lymphocyte infiltration, whereas T-cells as well as B-cells could be observed. In comparison to MgCa0.8-screws, the degradation rate and inflammatory tissue response were increased and the screw holding power was decreased after six weeks. In conclusion, ZEK100-screws seem to be inferior to MgCa0.8-screws, although their initial strength was more appropriate.


Asunto(s)
Aleaciones/química , Materiales Biocompatibles/química , Fenómenos Biomecánicos , Tornillos Óseos , Ensayo de Materiales , Animales , Calcio/química , Femenino , Inmunohistoquímica , Inflamación , Linfocitos/citología , Macrófagos/citología , Magnesio/química , Microscopía Electrónica de Rastreo , Conejos , Tibia/patología , Factores de Tiempo , Microtomografía por Rayos X
6.
Biomed Eng Online ; 11: 12, 2012 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-22413949

RESUMEN

BACKGROUND: In recent years magnesium alloys have been intensively investigated as potential resorbable materials with appropriate mechanical and corrosion properties. Particularly in orthopedic research magnesium is interesting because of its mechanical properties close to those of natural bone, the prevention of both stress shielding and removal of the implant after surgery. METHODS: ZEK100 plates were examined in this in vitro study with Hank's Balanced Salt Solution under physiological conditions with a constant laminar flow rate. After 14, 28 and 42 days of immersion the ZEK100 plates were mechanically tested via four point bending test. The surfaces of the immersed specimens were characterized by SEM, EDX and XRD. RESULTS: The four point bending test displayed an increased bending strength after 6 weeks immersion compared to the 2 week group and 4 week group. The characterization of the surface revealed the presence of high amounts of O, P and Ca on the surface and small Mg content. This indicates the precipitation of calcium phosphates with low solubility on the surface of the ZEK100 plates. CONCLUSIONS: The results of the present in vitro study indicate that ZEK100 is a potential candidate for degradable orthopedic implants. Further investigations are needed to examine the degradation behavior.


Asunto(s)
Aleaciones/química , Bicarbonatos/química , Materiales Biocompatibles/química , Soluciones Isotónicas/química , Magnesio/química , Corrosión , Hidrodinámica , Inmersión , Fenómenos Mecánicos , Propiedades de Superficie
7.
J Mater Sci Mater Med ; 23(3): 649-55, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22210311

RESUMEN

Magnesium alloys have been in the focus of research in recent years as degradable biomaterial. The purpose of this study was the biomechanical characterisation of MgCa0.8-screws. The maximum pull out force of screws was determined in a synthetic bone without corrosion and after fixed intervals of corrosion: 24, 48, 72 and 96 h. This in vitro study has been carried out with Hank's solution with a flow rate corresponding to the blood flow in natural bone. A maximum pull out force (F(max)) of 201.5 ± 9.3 N was measured without corrosion. The biomechanical parameter decreased by 30% after 96 h in corrosive medium compared to the non-corrosion group. A maximum load capacity of 28 ± 7.6 N/h was determined. Our biomechanical data suggests that this biodegradable screw provides a promising bone-screw-fixation and has great potential for medical application.


Asunto(s)
Tornillos Óseos , Calcio/química , Magnesio/química , Fenómenos Biomecánicos , Electroquímica , Técnicas In Vitro , Flujo Sanguíneo Regional
8.
Acta Biomater ; 7(3): 1421-8, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21050898

RESUMEN

The aim of this study was to compare the biomechanical properties of degradable magnesium calcium alloy (MgCa0.8) screws and commonly used stainless steel (S316L) screws and to assess the in vivo degradation behavior of MgCa0.8. MgCa0.8 screws (n=48) and S316L screws (n=32) were implanted into both tibiae of 40 adult rabbits for a follow-up of 2, 4, 6 and 8 weeks. This resulted in a testing group of MgCa0.8 (n=12) and S316L (n=8) screws for each follow-up. Uniaxial pull-out tests were carried out in an MTS 858 Mini Bionix at a rate of 0.1 mm s(-1). For degradation analysis of MgCa0.8 in vivo micro-computed tomography (µCT) was performed to determine the volume of metal alloy remaining. Retrieved MgCa0.8 screws were analysed for degradation by determination of weight changes, scanning electron microscopy and energy dispersive X-ray analyses. No significant differences could be noted between the pull-out forces of MgCa0.8 and S316L 2 weeks after surgery (P=0.121). Six weeks after surgery the pull-out force of MgCa0.8 decreased slightly. In contrast, the S316L pull-out force increased with time. Thus, significantly higher pull-out values were detected for S316L from 4 weeks on (P<0.001). The volume and weight of MgCa0.8 gradually reduced. A corrosion layer, mainly composed of oxygen, magnesium, calcium and phosphorus, formed on the implants. Since MgCa0.8 showed good biocompatibility and biomechanical properties, comparable with those of S316L in the first 2-3 weeks of implantation, its application as a biodegradable implant is conceivable.


Asunto(s)
Aleaciones , Fenómenos Biomecánicos , Calcio/química , Magnesio/química , Animales , Conejos , Tomografía/métodos
9.
Biomed Eng Online ; 9: 63, 2010 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-20974008

RESUMEN

BACKGROUND: Recent studies have shown the potential suitability of magnesium alloys as biodegradable implants. The aim of the present study was to compare the soft tissue biocompatibility of MgCa0.8 and commonly used surgical steel in vivo. METHODS: A biodegradable magnesium calcium alloy (MgCa0.8) and surgical steel (S316L), as a control, were investigated. Screws of identical geometrical conformation were implanted into the tibiae of 40 rabbits for a postoperative follow up of two, four, six and eight weeks. The tibialis cranialis muscle was in direct vicinity of the screw head and thus embedded in paraffin and histologically and immunohistochemically assessed. Haematoxylin and eosin staining was performed to identify macrophages, giant cells and heterophil granulocytes as well as the extent of tissue fibrosis and necrosis. Mouse anti-CD79α and rat anti-CD3 monoclonal primary antibodies were used for B- and T-lymphocyte detection. Evaluation of all sections was performed by applying a semi-quantitative score. RESULTS: Clinically, both implant materials were tolerated well. Histology revealed that a layer of fibrous tissue had formed between implant and overlying muscle in MgCa0.8 and S316L, which was demarcated by a layer of synoviocyte-like cells at its interface to the implant. In MgCa0.8 implants cavities were detected within the fibrous tissue, which were surrounded by the same kind of cell type. The thickness of the fibrous layer and the amount of tissue necrosis and cellular infiltrations gradually decreased in S316L. In contrast, a decrease could only be noted in the first weeks of implantation in MgCa0.8, whereas parameters were increasing again at the end of the observation period. B-lymphocytes were found more often in MgCa0.8 indicating humoral immunity and the presence of soluble antigens. Conversely, S316L displayed a higher quantity of T-lymphocytes. CONCLUSIONS: Moderate inflammation was detected in both implant materials and resolved to a minimum during the first weeks indicating comparable biocompatibility for MgCa0.8 and S316L. Thus, the application of MgCa0.8 as biodegradable implant material seems conceivable. Since the inflammatory parameters were re-increasing at the end of the observation period in MgCa0.8 it is important to observe the development of inflammation over a longer time period in addition to the present study.


Asunto(s)
Aleaciones/efectos adversos , Materiales Biocompatibles , Calcio/química , Cirugía General/métodos , Magnesio/química , Ensayo de Materiales , Acero/efectos adversos , Implantes Absorbibles , Animales , Materiales Biocompatibles/efectos adversos , Materiales Biocompatibles/química , Tornillos Óseos/efectos adversos , Femenino , Inflamación/inducido químicamente , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Conejos , Radiografía , Tibia/diagnóstico por imagen , Tibia/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA