Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Methods Mol Biol ; 2767: 63-74, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37402095

RESUMEN

Understanding the process of human embryo implantation is impeded by the inability to study this phenomenon in vivo, thus limiting opportunities to gain knowledge to in vitro modeling. Previous models have relied on monolayer co-cultures, which do not replicate the complexity of endometrial tissue. Here, we detail the establishment of three-dimensional endometrial assembloids, comprising gland-like epithelial organoids in a stromal matrix. Endometrial assembloids mimic endometrial tissue structure more faithfully and can be used to study human embryo-endometrial interactions. Co-cultures of human embryos and endometrial assembloids will enhance our fundamental understanding of these processes as well as allowing us to study the mechanisms of persistent reproductive failure.


Asunto(s)
Implantación del Embrión , Endometrio , Femenino , Humanos , Blastocisto , Trofoblastos , Técnicas de Cocultivo , Células del Estroma
2.
Cell Rep ; 42(12): 113525, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38060448

RESUMEN

Estrogen-dependent proliferation followed by progesterone-dependent differentiation of the endometrium culminates in a short implantation window. We performed single-cell assay for transposase-accessible chromatin with sequencing on endometrial samples obtained across the menstrual cycle to investigate the regulation of temporal gene networks that control embryo implantation. We identify uniquely accessible chromatin regions in all major cellular constituents of the endometrium, delineate temporal patterns of coordinated chromatin remodeling in epithelial and stromal cells, and gain mechanistic insights into the emergence of a receptive state through integrated analysis of enriched transcription factor (TF) binding sites in dynamic chromatin regions, chromatin immunoprecipitation sequencing analyses, and gene expression data. We demonstrate that the implantation window coincides with pervasive cooption of transposable elements (TEs) into the regulatory chromatin landscape of decidualizing cells and expression of TE-derived transcripts in a spatially defined manner. Our data constitute a comprehensive map of the chromatin changes that control TF activities in a cycling endometrium at cellular resolution.


Asunto(s)
Ensamble y Desensamble de Cromatina , Endometrio , Femenino , Humanos , Endometrio/metabolismo , Implantación del Embrión/fisiología , Ciclo Menstrual/metabolismo , Cromatina/metabolismo , Células del Estroma/metabolismo
3.
iScience ; 26(4): 106339, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36968081

RESUMEN

We tested the hypothesis that conserved placental mammal-specific microRNAs and their targets facilitate endometrial receptivity to implantation. Expression of miR-340-5p, -542-3p, and -671-5p was regulated by exposure of endometrial epithelial cells to progesterone (10 µg/ml) for 24 h coordinate with 1,713 of their predicted targets. Proteomic analysis of cells transfected with miRNA mimic/inhibitor (48 h: n = 3) revealed 1,745 proteins altered by miR-340-5p (mimic; 1,369, inhibitor; 376) of which 171 were predicted targets and P4-regulated. MiR-542-3p altered 2,353 (mimic; 1,378, inhibitor; 975) 100 which were mirDB predicted, including 46 P4-regulated. MiR-671-5p altered 1,744 proteins (mimic; 1,252, inhibitor; 492) 95 of which were predicted targets and 46 P4-regulated. All miRNAs were detected in luteal phase endometrial biopsies, irrespective of pregnancy outcomes. miR-340-5p expression increased in biopsies from individuals suffering previous and subsequent miscarriage compared to those with subsequent live birth. Dysfunction of these miRNAs and their targets contribute to endometrial-derived recurrent pregnancy loss.

4.
EBioMedicine ; 81: 104134, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35779492

RESUMEN

Upon embryo implantation, the uterine mucosa - the endometrium - transforms into a robust decidual matrix that accommodates the fetal placenta throughout pregnancy. This transition is driven by the differentiation of endometrial fibroblasts into specialised decidual cells. A synchronised influx of circulating natural killer (NK) cells and bone marrow-derived mesenchymal stem/progenitor cells (BM-MSC) is pivotal for decidual homeostasis and expansion in early pregnancy. We hypothesise that pathological signals interfering with the recruitment or activity of extrauterine cells at the maternal-fetal interface link miscarriage to subsequent adverse pregnancy outcomes, including further pregnancy losses and preterm labour. NK cells and BM-MSC are key homeostatic regulators in multiple tissues, pointing towards a shared aetiology between recurrent miscarriage and age-related disorders, including cardiometabolic disease. We propose the term 'miscarriage syndrome' to capture the health risks associated with miscarriage and discuss how this paradigm can inform clinical practice and accelerate the development of preventative strategies.


Asunto(s)
Aborto Habitual , Resultado del Embarazo , Aborto Habitual/etiología , Implantación del Embrión , Endometrio , Femenino , Humanos , Recién Nacido , Embarazo , Útero
5.
Hum Reprod ; 37(4): 747-761, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35092277

RESUMEN

STUDY QUESTION: Can the accuracy of timing of luteal phase endometrial biopsies based on urinary ovulation testing be improved by measuring the expression of a small number of genes and a continuous, non-categorical modelling approach? SUMMARY ANSWER: Measuring the expression levels of six genes (IL2RB, IGFBP1, CXCL14, DPP4, GPX3 and SLC15A2) is sufficient to obtain substantially more accurate timing estimates and to assess the reliability of timing estimates for each sample. WHAT IS KNOWN ALREADY: Commercially available endometrial timing approaches based on gene expression require large gene sets and use a categorical approach that classifies samples as pre-receptive, receptive or post-receptive. STUDY DESIGN, SIZE, DURATION: Gene expression was measured by RTq-PCR in different sample sets, comprising a total of 664 endometrial biopsies obtained 4-12 days after a self-reported positive home ovulation test. A further 36 endometrial samples were profiled by RTq-PCR as well as RNA-sequencing. PARTICIPANTS/MATERIALS, SETTING, METHODS: A computational procedure, named 'EndoTime', was established that models the temporal profile of each gene and estimates the timing of each sample. Iterating these steps, temporal profiles are gradually refined as sample timings are being updated, and confidence in timing estimates is increased. After convergence, the method reports updated timing estimates for each sample while preserving the overall distribution of time points. MAIN RESULTS AND THE ROLE OF CHANCE: The Wilcoxon rank-sum test was used to confirm that ordering samples by EndoTime estimates yields sharper temporal expression profiles for held-out genes (not used when determining sample timings) than ordering the same expression values by patient-reported times (GPX3: P < 0.005; CXCL14: P < 2.7e-6; DPP4: P < 3.7e-13). Pearson correlation between EndoTime estimates for the same sample set but based on RTq-PCR or RNA-sequencing data showed a high degree of congruency between the two (P = 8.6e-10, R2 = 0.687). Estimated timings did not differ significantly between control subjects and patients with recurrent pregnancy loss or recurrent implantation failure (P > 0.05). LARGE SCALE DATA: The RTq-PCR data files are available via the GitHub repository for the EndoTime software at https://github.com/AE-Mitchell/EndoTime, as is the code used for pre-processing of RTq-PCR data. The RNA-sequencing data are available on GEO (accession GSE180485). LIMITATIONS, REASONS FOR CAUTION: Timing estimates are informed by glandular gene expression and will only represent the temporal state of other endometrial cell types if in synchrony with the epithelium. Methods that estimate the day of ovulation are still required as these data are essential inputs in our method. Our approach, in its current iteration, performs batch correction such that larger sample batches impart greater accuracy to timing estimations. In theory, our method requires endometrial samples obtained at different days in the luteal phase. In practice, however, this is not a concern as timings based on urinary ovulation testing are associated with a sufficient level of noise to ensure that a variety of time points will be sampled. WIDER IMPLICATIONS OF THE FINDINGS: Our method is the first to assay the temporal state of luteal-phase endometrial samples on a continuous domain. It is freely available with fully shared data and open-source software. EndoTime enables accurate temporal profiling of any gene in luteal endometrial samples for a wide range of research applications and, potentially, clinical use. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by a Wellcome Trust Investigator Award (Grant/Award Number: 212233/Z/18/Z) and the Tommy's National Miscarriage Research Centre. None of the authors have any competing interests. J.L. was funded by the Biotechnology and Biological Sciences Research Council (UK) through the Midlands Integrative Biology Training Partnership (MIBTP, BB/M01116X/1).


Asunto(s)
Aborto Habitual , Endometrio , Aborto Habitual/metabolismo , Endometrio/metabolismo , Femenino , Humanos , Fase Luteínica/metabolismo , Embarazo , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN
6.
Semin Cell Dev Biol ; 131: 14-24, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35094946

RESUMEN

Compared to most mammals, human pregnancy is unusual in that it involves chromosomally diverse embryos, cyclical breakdown and regeneration of the uterine mucosa, and intimate integration of fetal and maternal cells at the uteroplacental interface. Not surprisingly, pregnancy often falters in early gestation. Whether these losses result in clinical miscarriages depends on the origins and impacts of chromosomal errors on fetal development and the ability of the decidualizing endometrium to engage in embryo biosensing and selection. Aneuploidy originating in oocytes during meiosis drives the age-related risk of miscarriage. By contrast, the frequency of endometrial cycles with an impaired decidual response may account for the stepwise increase in miscarriage rates with each pregnancy loss independently of maternal age. Additional physiological mechanisms operate in early gestation to ensure that most failing pregnancies are lost before vascular maternal-fetal connections are established by the end of the first trimester. Here, we summarise how investigations into the mechanisms that cause miscarriage led to new insights into the processes that govern maternal selection of human embryos in early gestation.


Asunto(s)
Aborto Habitual , Aborto Habitual/etiología , Aneuploidia , Animales , Embrión de Mamíferos , Endometrio , Femenino , Humanos , Mamíferos , Embarazo
7.
Elife ; 102021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34487490

RESUMEN

Decidual remodelling of midluteal endometrium leads to a short implantation window after which the uterine mucosa either breaks down or is transformed into a robust matrix that accommodates the placenta throughout pregnancy. To gain insights into the underlying mechanisms, we established and characterized endometrial assembloids, consisting of gland-like organoids and primary stromal cells. Single-cell transcriptomics revealed that decidualized assembloids closely resemble midluteal endometrium, harbouring differentiated and senescent subpopulations in both glands and stroma. We show that acute senescence in glandular epithelium drives secretion of multiple canonical implantation factors, whereas in the stroma it calibrates the emergence of anti-inflammatory decidual cells and pro-inflammatory senescent decidual cells. Pharmacological inhibition of stress responses in pre-decidual cells accelerated decidualization by eliminating the emergence of senescent decidual cells. In co-culture experiments, accelerated decidualization resulted in entrapment of collapsed human blastocysts in a robust, static decidual matrix. By contrast, the presence of senescent decidual cells created a dynamic implantation environment, enabling embryo expansion and attachment, although their persistence led to gradual disintegration of assembloids. Our findings suggest that decidual senescence controls endometrial fate decisions at implantation and highlight how endometrial assembloids may accelerate the discovery of new treatments to prevent reproductive failure.


At the beginning of a human pregnancy, the embryo implants into the uterus lining, known as the endometrium. At this point, the endometrium transforms into a new tissue that helps the placenta to form. Problems in this transformation process are linked to pregnancy disorders, many of which can lead to implantation failure (the embryo fails to invade the endometrium altogether) or recurrent miscarriages (the embryo implants successfully, but the interface between the placenta and the endometrium subsequently breaks down). Studying the implantation of human embryos directly is difficult due to ethical and technical barriers, and animals do not perfectly mimic the human process, making it challenging to determine the causes of pregnancy disorders. However, it is likely that a form of cellular arrest called senescence, in which cells stop dividing but remain metabolically active, plays a role. Indeed, excessive senescence in the cells that make up the endometrium is associated with recurrent miscarriage, while a lack of senescence is associated with implantation failure. To study this process, Rawlings et al. developed a new laboratory model of the human endometrium by assembling two of the main cell types found in the tissue into a three-dimensional structure. When treated with hormones, these 'assembloids' successfully mimic the activity of genes in the cells of the endometrium during implantation. Rawlings et al. then exposed the assembloids to the drug dasatinib, which targets and eliminates senescent cells. This experiment showed that assembloids become very robust and static when devoid of senescent cells. Rawlings et al. then studied the interaction between embryos and assembloids using time-lapse imaging. In the absence of dasatinib treatment, cells in the assembloid migrated towards the embryo as it expanded, a process required for implantation. However, when senescent cells were eliminated using dasatinib, this movement of cells towards the embryo stopped, and the embryo failed to expand, in a situation that mimicks implantation failure. The assembloid model of the endometrium may help scientists to study endometrial defects in the lab and test potential treatments. Further work will include other endometrial cell types in the assembloids, and could help increase the reliability of the model. However, any drug treatments identified using this model will need further research into their safety and effectiveness before they can be offered to patients.


Asunto(s)
Senescencia Celular , Implantación del Embrión/fisiología , Endometrio/citología , Células del Estroma/citología , Técnicas de Cocultivo , Decidua/fisiología , Femenino , Humanos , Organoides , Embarazo
8.
Lancet ; 397(10285): 1658-1667, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33915094

RESUMEN

Miscarriage is generally defined as the loss of a pregnancy before viability. An estimated 23 million miscarriages occur every year worldwide, translating to 44 pregnancy losses each minute. The pooled risk of miscarriage is 15·3% (95% CI 12·5-18·7%) of all recognised pregnancies. The population prevalence of women who have had one miscarriage is 10·8% (10·3-11·4%), two miscarriages is 1·9% (1·8-2·1%), and three or more miscarriages is 0·7% (0·5-0·8%). Risk factors for miscarriage include very young or older female age (younger than 20 years and older than 35 years), older male age (older than 40 years), very low or very high body-mass index, Black ethnicity, previous miscarriages, smoking, alcohol, stress, working night shifts, air pollution, and exposure to pesticides. The consequences of miscarriage are both physical, such as bleeding or infection, and psychological. Psychological consequences include increases in the risk of anxiety, depression, post-traumatic stress disorder, and suicide. Miscarriage, and especially recurrent miscarriage, is also a sentinel risk marker for obstetric complications, including preterm birth, fetal growth restriction, placental abruption, and stillbirth in future pregnancies, and a predictor of longer-term health problems, such as cardiovascular disease and venous thromboembolism. The costs of miscarriage affect individuals, health-care systems, and society. The short-term national economic cost of miscarriage is estimated to be £471 million per year in the UK. As recurrent miscarriage is a sentinel marker for various obstetric risks in future pregnancies, women should receive care in preconception and obstetric clinics specialising in patients at high risk. As psychological morbidity is common after pregnancy loss, effective screening instruments and treatment options for mental health consequences of miscarriage need to be available. We recommend that miscarriage data are gathered and reported to facilitate comparison of rates among countries, to accelerate research, and to improve patient care and policy development.


Asunto(s)
Aborto Espontáneo/epidemiología , Ansiedad/psicología , Depresión/psicología , Trastornos por Estrés Postraumático/psicología , Aborto Habitual/economía , Aborto Habitual/epidemiología , Aborto Habitual/fisiopatología , Aborto Habitual/psicología , Aborto Espontáneo/economía , Aborto Espontáneo/fisiopatología , Aborto Espontáneo/psicología , Endometritis/epidemiología , Femenino , Retardo del Crecimiento Fetal/epidemiología , Humanos , Nacimiento Prematuro/epidemiología , Prevalencia , Factores de Riesgo , Mortinato/epidemiología , Suicidio/psicología , Hemorragia Uterina/epidemiología
9.
Stem Cells ; 39(8): 1067-1080, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33764639

RESUMEN

Pregnancy depends on the wholesale transformation of the endometrium, a process driven by differentiation of endometrial stromal cells (EnSC) into specialist decidual cells. Upon embryo implantation, decidual cells impart the tissue plasticity needed to accommodate a rapidly growing conceptus and invading placenta, although the underlying mechanisms are unclear. Here we characterize a discrete population of highly proliferative mesenchymal cells (hPMC) in midluteal human endometrium, coinciding with the window of embryo implantation. Single-cell transcriptomics demonstrated that hPMC express genes involved in chemotaxis and vascular transmigration. Although distinct from resident EnSC, hPMC also express genes encoding pivotal decidual transcription factors and markers, most prominently prolactin. We further show that hPMC are enriched around spiral arterioles, scattered throughout the stroma, and occasionally present in glandular and luminal epithelium. The abundance of hPMC correlated with the in vitro colony-forming unit activity of midluteal endometrium and, conversely, clonogenic cells in culture express a gene signature partially conserved in hPMC. Cross-referencing of single-cell RNA-sequencing data sets indicated that hPMC differentiate into a recently discovered decidual subpopulation in early pregnancy. Finally, we demonstrate that recurrent pregnancy loss is associated with hPMC depletion. Collectively, our findings characterize midluteal hPMC as novel decidual precursors that are likely derived from circulating bone marrow-derived mesenchymal stem/stromal cells and integral to decidual plasticity in pregnancy.


Asunto(s)
Implantación del Embrión , Endometrio , Diferenciación Celular , Decidua , Embrión de Mamíferos , Femenino , Humanos , Embarazo , Células del Estroma
10.
FASEB J ; 35(4): e21336, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33749894

RESUMEN

Decidualizing endometrial stromal cells (EnSC) critically determine the maternal response to an implanting conceptus, triggering either menstruation-like disposal of low-fitness embryos or creating an environment that promotes further development. However, the mechanism that couples maternal recognition of low-quality embryos to tissue breakdown remains poorly understood. Recently, we demonstrated that successful transition of the cycling endometrium to a pregnancy state requires selective elimination of pro-inflammatory senescent decidual cells by activated uterine natural killer (uNK) cells. Here we report that uNK cells express CD44, the canonical hyaluronan (HA) receptor, and demonstrate that high molecular weight HA (HMWHA) inhibits uNK cell-mediated killing of senescent decidual cells. In contrast, low molecular weight HA (LMWHA) did not attenuate uNK cell activity in co-culture experiments. Killing of senescent decidual cells by uNK cells was also inhibited upon exposure to medium conditioned by IVF embryos that failed to implant, but not successful embryos. Embryo-mediated inhibition of uNK cell activity was reversed by recombinant hyaluronidase 2 (HYAL2), which hydrolyses HMWHA. We further report a correlation between the levels of HYAL2 secretion by human blastocysts, morphological scores, and implantation potential. Taken together, the data suggest a pivotal role for uNK cells in embryo biosensing and endometrial fate decisions at implantation.


Asunto(s)
Implantación del Embrión/fisiología , Células Asesinas Naturales/fisiología , Útero/citología , Útero/fisiología , Moléculas de Adhesión Celular , Técnicas de Cocultivo , Femenino , Proteínas Ligadas a GPI , Regulación del Desarrollo de la Expresión Génica , Humanos , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Ácido Hialurónico/metabolismo , Hialuronoglucosaminidasa
11.
Front Cell Dev Biol ; 9: 626619, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33585482

RESUMEN

Differentiation of endometrial fibroblasts into specialized decidual cells controls embryo implantation and transforms the cycling endometrium into a semi-permanent, immune-protective matrix that accommodates the placenta throughout pregnancy. This process starts during the midluteal phase of the menstrual cycle with decidual transformation of perivascular cells (PVC) surrounding the terminal spiral arterioles and endometrial stromal cells (EnSC) underlying the luminal epithelium. Decidualization involves extensive cellular reprogramming and acquisition of a secretory phenotype, essential for coordinated placental trophoblast invasion. Secreted metabolites are an emerging class of signaling molecules, collectively known as the exometabolome. Here, we used liquid chromatography-mass spectrometry to characterize and analyze time-resolved changes in metabolite secretion (exometabolome) of primary PVC and EnSC decidualized over 8 days. PVC were isolated using positive selection of the cell surface marker SUSD2. We identified 79 annotated metabolites differentially secreted upon decidualization, including prostaglandin, sphingolipid, and hyaluronic acid metabolites. Secreted metabolites encompassed 21 metabolic pathways, most prominently glycerolipid and pyrimidine metabolism. Although temporal exometabolome changes were comparable between decidualizing PVC and EnSC, 32 metabolites were differentially secreted across the decidualization time-course. Further, targeted metabolomics demonstrated significant differences in secretion of purine pathway metabolites between decidualized PVC and EnSC. Taken together, our findings indicate that the metabolic footprints generated by different decidual subpopulations encode spatiotemporal information that may be important for optimal embryo implantation.

12.
Reprod Fertil ; 2(3): R85-R101, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-35118399

RESUMEN

Despite advances in assisted reproductive techniques in the 4 decades since the first human birth after in vitro fertilisation, 1-2% of couples experience recurrent implantation failure, and some will never achieve a successful pregnancy even in the absence of a confirmed dysfunction. Furthermore, 1-2% of couples who do conceive, either naturally or with assistance, will experience recurrent early loss of karyotypically normal pregnancies. In both cases, embryo-endometrial interaction is a clear candidate for exploration. The impossibility of studying implantation processes within the human body has necessitated the use of animal models and cell culture approaches. Recent advances in 3-dimensional modelling techniques, namely the advent of organoids, present an exciting opportunity to elucidate the unanswerable within human reproduction. In this review, we will explore the ontogeny of implantation modelling and propose a roadmap to application and discovery. LAY SUMMARY: A significant number of couples experience either recurrent implantation failure or recurrent pregnancy loss. Often, no underlying disorder can be identified. In both cases, the interaction of the embryo and maternal tissues is key. The lining of the womb, the endometrium, becomes receptive to embryo implantation during each menstrual cycle and provides a nourishing and supportive environment to support ongoing pregnancy. It is not possible to study early pregnancy directly, therefore, modelling embryo-endometrium interactions in the laboratory is essential if we wish to understand where this goes wrong. Advances in the lab have resulted in the development of organoids in culture: 3D cellular structures that represent the characteristics of a particular tissue or organ. We describe past and present models of the endometrium and propose a roadmap for future work with organoid models, from fundamental understanding of the endometrial function and implantation processes to the development of therapeutics to improve pregnancy outcomes and gynaecological health.


Asunto(s)
Implantación del Embrión , Organoides , Endometrio , Femenino , Fertilización In Vitro , Humanos , Embarazo , Técnicas Reproductivas Asistidas
13.
J Dev Orig Health Dis ; 12(3): 384-395, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32500846

RESUMEN

Adverse programming of adult non-communicable disease can be induced by poor maternal nutrition during pregnancy and the periconception period has been identified as a vulnerable period. In the current study, we used a mouse maternal low-protein diet fed either for the duration of pregnancy (LPD) or exclusively during the preimplantation period (Emb-LPD) with control nutrition provided thereafter and postnatally to investigate effects on fetal bone development and quality. This model has been shown previously to induce cardiometabolic and neurological disease phenotypes in offspring. Micro 3D computed tomography examination at fetal stages Embryonic day E14.5 and E17.4, reflecting early and late stages of bone formation, demonstrated LPD treatment caused increased bone formation of relative high mineral density quality in males, but not females, at E14.5, disproportionate to fetal growth, with bone quality maintained at E17.5. In contrast, Emb-LPD caused a late increase in male fetal bone growth, proportionate to fetal growth, at E17.5, affecting central and peripheral skeleton and of reduced mineral density quality relative to controls. These altered dynamics in bone growth coincide with increased placental efficiency indicating compensatory responses to dietary treatments. Overall, our data show fetal bone formation and mineral quality is dependent upon maternal nutritional protein content and is sex-specific. In particular, we find the duration and timing of poor maternal diet to be critical in the outcomes with periconceptional protein restriction leading to male offspring with increased bone growth but of poor mineral density, thereby susceptible to later disease risk.


Asunto(s)
Densidad Ósea , Huesos/embriología , Dieta con Restricción de Proteínas/efectos adversos , Desarrollo Fetal , Fenómenos Fisiologicos Nutricionales Maternos , Animales , Femenino , Masculino , Ratones , Embarazo
14.
Commun Biol ; 3(1): 37, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31965050

RESUMEN

During the implantation window, the endometrium becomes poised to transition to a pregnant state, a process driven by differentiation of stromal cells into decidual cells (DC). Perturbations in this process, termed decidualization, leads to breakdown of the feto-maternal interface and miscarriage, but the underlying mechanisms are poorly understood. Here, we reconstructed the decidual pathway at single-cell level in vitro and demonstrate that stromal cells first mount an acute stress response before emerging as DC or senescent DC (snDC). In the absence of immune cell-mediated clearance of snDC, secondary senescence transforms DC into progesterone-resistant cells that abundantly express extracellular matrix remodelling factors. Additional single-cell analysis of midluteal endometrium identified DIO2 and SCARA5 as marker genes of a diverging decidual response in vivo. Finally, we report a conspicuous link between a pro-senescent decidual response in peri-implantation endometrium and recurrent pregnancy loss, suggesting that pre-pregnancy screening and intervention may reduce the burden of miscarriage.


Asunto(s)
Aborto Habitual/etiología , Senescencia Celular , Decidua/metabolismo , Implantación del Embrión , Aborto Habitual/metabolismo , Línea Celular , Senescencia Celular/genética , Susceptibilidad a Enfermedades , Implantación del Embrión/genética , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Vigilancia Inmunológica , Modelos Biológicos , Embarazo , Transducción de Señal , Análisis de la Célula Individual , Transcriptoma
15.
EBioMedicine ; 51: 102597, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31928963

RESUMEN

BACKGROUND: Recurrent pregnancy loss (RPL) is associated with the loss of endometrial mesenchymal stem-like progenitor cells (eMSC). DPP4 inhibitors may increase homing and engraftment of bone marrow-derived cells to sites of tissue injury. Here, we evaluated the effect of the DPP4 inhibitor sitagliptin on eMSC in women with RPL, determined the impact on endometrial decidualization, and assessed the feasibility of a full-scale clinical trial. METHODS: A double-blind, randomised, placebo-controlled feasibility trial on women aged 18 to 42 years with a history of 3 or more miscarriages, regular menstrual cycles, and no contraindications to sitagliptin. Thirty-eight subjects were randomised to either 100 mg sitagliptin daily for 3 consecutive cycles or identical placebo capsules. Computer generated, permuted block randomisation was used to allocate treatment packs. Colony forming unit (CFU) assays were used to quantify eMSC in midluteal endometrial biopsies. The primary outcome measure was CFU counts. Secondary outcome measures were endometrial thickness, study acceptability, and first pregnancy outcome within 12 months following the study. Tissue samples were subjected to explorative investigations. FINDINGS: CFU counts following sitagliptin were higher compared to placebo only when adjusted for baseline CFU counts and age (RR: 1.52, 95% CI: 1.32-1.75, P<0.01). The change in CFU count was 1.68 in the sitagliptin group and 1.08 in the placebo group. Trial recruitment, acceptability, and drug compliance were high. There were no serious adverse events. Explorative investigations showed that sitagliptin inhibits the expression of DIO2, a marker gene of senescent decidual cells. INTERPRETATION: Sitagliptin increases eMSCs and decreases decidual senescence. A large-scale clinical trial evaluating the impact of preconception sitagliptin treatment on pregnancy outcome in RPL is feasible and warranted. FUNDING: Tommy's Baby Charity. CLINICAL TRIAL REGISTRATION: EU Clinical Trials Register no. 2016-001120-54.


Asunto(s)
Endometrio/citología , Células Madre Mesenquimatosas/citología , Fosfato de Sitagliptina/farmacología , Administración Oral , Adulto , Ensayo de Unidades Formadoras de Colonias , Dipeptidil Peptidasa 4/metabolismo , Método Doble Ciego , Estudios de Factibilidad , Femenino , Humanos , Selección de Paciente , Placebos , Embarazo , Resultado del Embarazo , Análisis de Regresión , Fosfato de Sitagliptina/administración & dosificación
16.
Front Cell Dev Biol ; 8: 621016, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33537312

RESUMEN

Vascular adhesion protein-1 (VAP-1) is an inflammation-inducible adhesion molecule and a primary amine oxidase involved in immune cell trafficking. Leukocyte extravasation into tissues is mediated by adhesion molecules expressed on endothelial cells and pericytes. Pericytes play a major role in the angiogenesis and vascularization of cycling endometrium. However, the functional properties of pericytes in the human endometrium are not known. Here we show that pericytes surrounding the spiral arterioles in midluteal human endometrium constitutively express VAP-1. We first characterize these pericytes and demonstrate that knockdown of VAP-1 perturbed their biophysical properties and compromised their contractile, migratory, adhesive and clonogenic capacities. Furthermore, we show that loss of VAP-1 disrupts pericyte-uterine natural killer cell interactions in vitro. Taken together, the data not only reveal that endometrial pericytes represent a cell population with distinct biophysical and functional properties but also suggest a pivotal role for VAP-1 in regulating the recruitment of innate immune cells in human endometrium. We posit that VAP-1 could serve as a potential biomarker for pregnancy pathologies caused by a compromised perivascular environment prior to conception.

17.
FASEB J ; 32(5): 2467-2477, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29259032

RESUMEN

Spontaneous decidualization of the endometrium in response to progesterone signaling is confined to menstruating species, including humans and other higher primates. During this process, endometrial stromal cells (EnSCs) differentiate into specialized decidual cells that control embryo implantation. We subjected undifferentiated and decidualizing human EnSCs to an assay for transposase accessible chromatin with sequencing (ATAC-seq) to map the underlying chromatin changes. A total of 185,084 open DNA loci were mapped accurately in EnSCs. Altered chromatin accessibility upon decidualization was strongly associated with differential gene expression. Analysis of 1533 opening and closing chromatin regions revealed over-representation of DNA binding motifs for known decidual transcription factors (TFs) and identified putative new regulators. ATAC-seq footprint analysis provided evidence of TF binding at specific motifs. One of the largest footprints involved the most enriched motif-basic leucine zipper-as part of a triple motif that also comprised the estrogen receptor and Pax domain binding sites. Without exception, triple motifs were located within Alu elements, which suggests a role for this primate-specific transposable element (TE) in the evolution of decidual genes. Although other TEs were generally under-represented in open chromatin of undifferentiated EnSCs, several classes contributed to the regulatory DNA landscape that underpins decidual gene expression.-Vrljicak, P., Lucas, E. S., Lansdowne, L., Lucciola, R., Muter, J., Dyer, N. P., Brosens, J. J., Ott, S. Analysis of chromatin accessibility in decidualizing human endometrial stromal cells.


Asunto(s)
Elementos Alu/fisiología , Diferenciación Celular/fisiología , Cromatina/metabolismo , Decidua/metabolismo , Regulación de la Expresión Génica/fisiología , Sitios Genéticos , Cromatina/genética , Decidua/citología , Implantación del Embrión/fisiología , Femenino , Humanos , Células del Estroma/citología , Células del Estroma/metabolismo
18.
Elife ; 62017 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-29227245

RESUMEN

In cycling human endometrium, menstruation is followed by rapid estrogen-dependent growth. Upon ovulation, progesterone and rising cellular cAMP levels activate the transcription factor Forkhead box O1 (FOXO1) in endometrial stromal cells (EnSCs), leading to cell cycle exit and differentiation into decidual cells that control embryo implantation. Here we show that FOXO1 also causes acute senescence of a subpopulation of decidualizing EnSCs in an IL-8 dependent manner. Selective depletion or enrichment of this subpopulation revealed that decidual senescence drives the transient inflammatory response associated with endometrial receptivity. Further, senescent cells prevent differentiation of endometrial mesenchymal stem cells in decidualizing cultures. As the cycle progresses, IL-15 activated uterine natural killer (uNK) cells selectively target and clear senescent decidual cells through granule exocytosis. Our findings reveal that acute decidual senescence governs endometrial rejuvenation and remodeling at embryo implantation, and suggest a critical role for uNK cells in maintaining homeostasis in cycling endometrium.


Asunto(s)
Senescencia Celular , Decidua/citología , Endometrio/citología , Células Asesinas Naturales/citología , Células del Estroma/citología , Útero/citología , Diferenciación Celular , Células Cultivadas , Decidua/metabolismo , Endometrio/metabolismo , Femenino , Proteína Forkhead Box O1/metabolismo , Regulación de la Expresión Génica , Humanos , Interleucina-15/metabolismo , Interleucina-8/metabolismo , Células Asesinas Naturales/metabolismo , Transducción de Señal , Células del Estroma/metabolismo , Útero/metabolismo
19.
Adv Exp Med Biol ; 1014: 137-154, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28864989

RESUMEN

The number of adults afflicted with heart disease, obesity and diabetes, central components of metabolic disorder, has grown rapidly in recent decades, affecting up to one quarter of the world's population. Typically, these diseases are attributed to lifestyle factors such as poor diet, lack of exercise and smoking. However, studies have now identified strong associations between patterns of growth during foetal and neonatal life and an increase predisposition towards developing heart disease, obesity and diabetes in adult life. While the connection between a mother's diet and the long-term health of her offspring has been studied in great detail, our understanding of whether offspring health might be affected by a father's diet remains limited. Greater insight into the impact that paternal nutrition has on sperm quality, epigenetic status and potential offspring programming mechanisms is needed to redress this parental-programming knowledge imbalance. Disturbances in paternal reproductive epigenetic status represents one key mechanism linking paternal diet with the programing of offspring development and adult health, as many enzymatic processes involved in epigenetic regulation use metabolic intermediates to modify DNA and histones. Here, poor paternal nutrition could result in perturbed sperm and testicular epigenetic status, impacting on post-fertilisation gene transcriptional regulation and protein expression in offspring tissues, resulting in increased incidences of metabolic disorder in adult life.


Asunto(s)
Desarrollo Embrionario , Epigénesis Genética , Fertilización , Femenino , Humanos , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Estado Nutricional , Exposición Paterna , Fenotipo , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...