Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 127(10): 2351-2366, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36877868

RESUMEN

Ammonia (NH3) is a promising fuel, because it is carbon-free and easier to store and transport than hydrogen (H2). However, an ignition enhancer such as H2 might be needed for technical applications, because of the rather poor ignition properties of NH3. The combustion of pure NH3 and H2 has been explored widely. However, for mixtures of both gases, mostly only global parameters such as ignition delay times or flame speeds were reported. Studies with extensive experimental species profiles are scarce. Therefore, we experimentally investigated the interactions in the oxidation of different NH3/H2 mixtures in the temperature range of 750-1173 K at 0.97 bar in a plug-flow reactor (PFR), as well as in the temperature range of 1615-2358 K with an average pressure of 3.16 bar in a shock tube. In the PFR, temperature-dependent mole fraction profiles of the main species were obtained via electron ionization molecular-beam mass spectrometry (EI-MBMS). Additionally, for the first time, tunable diode laser absorption spectroscopy (TDLAS) with a scanned-wavelength method was adapted to the PFR for the quantification of nitric oxide (NO). In the shock tube, time-resolved NO profiles were also measured by TDLAS using a fixed-wavelength approach. The experimental results both in PFR and shock tube reveal the reactivity enhancement by H2 on ammonia oxidation. The extensive sets of results were compared with predictions by four NH3-related reaction mechanisms. None of the mechanisms can well predict all experimental results, but the Stagni et al. [React. Chem. Eng. 2020, 5, 696-711] and Zhu et al. [Combust. Flame 2022, 246, 115389] mechanisms perform best for the PFR and shock tube conditions, respectively. Exploratory kinetic analysis was conducted to identify the effect of H2 addition on ammonia oxidation and NO formation, as well as sensitive reactions in different temperature regimes. The results presented in this study can provide valuable information for further model development and highlight relevant properties of H2-assisted NH3 combustion.

2.
Angew Chem Int Ed Engl ; 61(42): e202209168, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-35895936

RESUMEN

A crucial chain-branching step in autoignition is the decomposition of ketohydroperoxides (KHP) to form an oxy radical and OH. Other pathways compete with chain-branching, such as "Korcek" dissociation of γ-KHP to a carbonyl and an acid. Here we characterize the formation of a γ-KHP and its decomposition to formic acid+acetone products from observations of n-butane oxidation in two complementary experiments. In jet-stirred reactor measurements, KHP is observed above 590 K. The KHP concentration decreases with increasing temperature, whereas formic acid and acetone products increase. Observation of characteristic isotopologs acetone-d3 and formic acid-d0 in the oxidation of CH3 CD2 CD2 CH3 is consistent with a Korcek mechanism. In laser-initiated oxidation experiments of n-butane, formic acid and acetone are produced on the timescale of KHP removal. Modelling the time-resolved production of formic acid provides an estimated upper limit of 2 s-1 for the rate coefficient of KHP decomposition to formic acid+acetone.

3.
J Phys Chem A ; 119(28): 7361-74, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-25695304

RESUMEN

In this paper we report the detection and identification of the keto-hydroperoxide (hydroperoxymethyl formate, HPMF, HOOCH2OCHO) and other partially oxidized intermediate species arising from the low-temperature (540 K) oxidation of dimethyl ether (DME). These observations were made possible by coupling a jet-stirred reactor with molecular-beam sampling capabilities, operated near atmospheric pressure, to a reflectron time-of-flight mass spectrometer that employs single-photon ionization via tunable synchrotron-generated vacuum-ultraviolet radiation. On the basis of experimentally observed ionization thresholds and fragmentation appearance energies, interpreted with the aid of ab initio calculations, we have identified HPMF and its conceivable decomposition products HC(O)O(O)CH (formic acid anhydride), HC(O)OOH (performic acid), and HOC(O)OH (carbonic acid). Other intermediates that were detected and identified include HC(O)OCH3 (methyl formate), cycl-CH2-O-CH2-O- (1,3-dioxetane), CH3OOH (methyl hydroperoxide), HC(O)OH (formic acid), and H2O2 (hydrogen peroxide). We show that the theoretical characterization of multiple conformeric structures of some intermediates is required when interpreting the experimentally observed ionization thresholds, and a simple method is presented for estimating the importance of multiple conformers at the estimated temperature (∼100 K) of the present molecular beam. We also discuss possible formation pathways of the detected species: for example, supported by potential energy surface calculations, we show that performic acid may be a minor channel of the O2 + CH2OCH2OOH reaction, resulting from the decomposition of the HOOCH2OCHOOH intermediate, which predominantly leads to the HPMF.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA