RESUMEN
Living and non-living biomass of Pseudomonas putida A (ATCC 12633) was used as biosorbent for the removing of Al(3+) from aqueous solutions. The process was stable with time, efficient at pH 4.3 and between 15°C and 42°C. Two isotherms models were applied to describe the interaction between the biosorbent and Al(3+). Non-living biomass of P. putida A (ATCC 12633) was found to be the most efficient at adsorbing Al(3+) with a maximum sorption capacity of 0.55mg Al(3+)/gr adsorbent and with 36×10(5) binding sites of Al(3+)/microorganisms. Infrared spectroscopy analysis shows that the biosorbent present some vibrational band of functional groups that change in presence of Al(3+): hydroxyl, carboxyl and phosphate. Considering that Al(3+) binds to the phosphate group of phosphatidylcholine, non-viable biomass of P. putida PB01 (mutant lacking phosphatidylcholine) was used. Aluminum adsorption of the parental strain was 30 times higher than values registered in P. putida PB01 (36×10(5) sites/microorganism vs 1.2×10(5) sites/microorganism, respectively). This result evidenced that the absence of phosphatidylcholine significantly affected the availability of the binding sites and consequently the efficiency of the biomass to adsorb Al(3+).
Asunto(s)
Aluminio/farmacocinética , Pseudomonas putida/metabolismo , Contaminantes Químicos del Agua/farmacocinética , Adsorción , Aluminio/análisis , Biodegradación Ambiental , Biomasa , Concentración de Iones de Hidrógeno , Pseudomonas putida/química , Contaminantes Químicos del Agua/análisisRESUMEN
The present study assessed the role of membrane components of Pseudomonas putida A (ATCC 12633) under chemical stress conditions originated by treatment with tetradecyltrimethylammonium bromide (TTAB), a cationic surfactant. We examined changes in fatty acid composition and in the fluidity of the membranes of cells exposed to TTAB at a specific point of growth as well as of cells growing with TTAB. The addition of 10-50 mg TTAB l(-1) promoted an increase in the saturated/unsaturated fatty acid ratio. By using fluorescence polarization techniques, we found that TTAB exerted a fluidizing effect on P. putida A (ATCC 12633) membranes. However, a complete reversal of induced membrane fluidification was detected after 15 min of incubation with TTAB. Consistently, the proportion of unsaturated fatty acids was lower in TTAB-treated cells as compared with non-treated cells. In the presence of TTAB, the content of phosphatidylglycerol increased (120â%), whilst that of cardiolipin decreased (60â%). Analysis of the fatty acid composition of P. putida A (ATCC 12633) showed that phosphatidylglycerol carried the major proportion of saturated fatty acids (89â%), whilst cardiolipin carried an elevated proportion of unsaturated fatty acids (18â%). The increase in phosphatidylglycerol and consequently in saturated fatty acids, together with a decrease in cardiolipin content, enabled greater membrane resistance, reversing the fluidizing effect of TTAB. Therefore, results obtained in the present study point to changes in the fatty acid profile as an adaptive response of P. putida A (ATCC 12633) cells to stress caused by a cationic surfactant.