Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros










Intervalo de año de publicación
1.
Plants (Basel) ; 12(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37687390

RESUMEN

Rice (Oryza sativa L.) is a very important cereal worldwide, since it is the staple food for more than half of the world's population. Iron (Fe) deficiency is among the most important agronomical concerns in calcareous soils where rice plants may suffer from this deficiency. Current production systems are based on the use of high-yielding varieties and the application of large quantities of agrochemicals, which can cause major environmental problems. The use of beneficial rhizosphere microorganisms is considered a relevant sustainable alternative to synthetic fertilizers. The main goal of this study was to determine the ability of the nonpathogenic strain Fusarium oxysporum FO12 to induce Fe-deficiency responses in rice plants and its effects on plant growth and Fe chlorosis. Experiments were carried out under hydroponic system conditions. Our results show that the root inoculation of rice plants with FO12 promotes the production of phytosiderophores and plant growth while reducing Fe chlorosis symptoms after several days of cultivation. Moreover, Fe-related genes are upregulated by FO12 at certain times in inoculated plants regardless of Fe conditions. This microorganism also colonizes root cortical tissues. In conclusion, FO12 enhances Fe-deficiency responses in rice plants, achieves growth promotion, and reduces Fe chlorosis symptoms.

2.
MethodsX ; 11: 102311, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37608959

RESUMEN

In this article, we present an agile method based on a cycle of meetings that guides the construction of intelligent decision support systems. This method presents the phases of initiation, analysis and planning, negotiation, control and intelligent decision support. A cycle represents a passage through all the phases of the method, where as the execution of a phase means that all the planned meetings were held. Each meeting lasted 15 min, and input and output were composed of artifacts that supported the evolution of each meeting. In the initial phase, a meeting was held with everyone with the cards for the survey of the requirements and the construction of the 3D graph to represent the size. In IT meetings, artifacts, forms and tables were used to define the first packages. In the analysis and planning phases, the objectives by key results form were used. In the negotiation, we use the structural sets form. In the control phase, we have the configuration artifact and its control graph. Finally, in intelligent decision support, we use the essential questions form. The method serves as a guide for building intelligent decision support systems that can help with problems like determining whether or not to sign a contract.•In the initial phase, cards for requirement gathering together with a complexity graph and Board Requirements by Layers and Key Person supported the organization of development packages.•In the control phase, the input structures enabled the creation of a continuous control artifact. Furthermore, the control chart showed what is in scope and is part of ongoing control.•The intelligent decision support phase guaranteed the refinement of requirements, which brought intelligence criteria to the development packages and gave them their unique characteristics.

3.
Int J Mol Sci ; 24(16)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37628796

RESUMEN

Iron (Fe) is abundant in soils but with a poor availability for plants, especially in calcareous soils. To favor its acquisition, plants develop morphological and physiological responses, mainly in their roots, known as Fe deficiency responses. In dicot plants, the regulation of these responses is not totally known, but some hormones and signaling molecules, such as auxin, ethylene, glutathione (GSH), nitric oxide (NO) and S-nitrosoglutathione (GSNO), have been involved in their activation. Most of these substances, including auxin, ethylene, GSH and NO, increase their production in Fe-deficient roots while GSNO, derived from GSH and NO, decreases its content. This paradoxical result could be explained with the increased expression and activity in Fe-deficient roots of the GSNO reductase (GSNOR) enzyme, which decomposes GSNO to oxidized glutathione (GSSG) and NH3. The fact that NO content increases while GSNO decreases in Fe-deficient roots suggests that NO and GSNO do not play the same role in the regulation of Fe deficiency responses. This review is an update of the results supporting a role for NO, GSNO and GSNOR in the regulation of Fe deficiency responses. The possible roles of NO and GSNO are discussed by taking into account their mode of action through post-translational modifications, such as S-nitrosylation, and through their interactions with the hormones auxin and ethylene, directly related to the activation of morphological and physiological responses to Fe deficiency in dicot plants.


Asunto(s)
Glutatión , Óxido Nítrico , Disulfuro de Glutatión , Etilenos , Ácidos Indolacéticos , Suelo
6.
Planta ; 257(3): 50, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36757472

RESUMEN

MAIN CONCLUSION: FO12 strain enhances Fe deficiency responses in cucumber plants, probably through the production of ethylene and NO in the subapical regions of the roots. Rhizosphere microorganisms can elicit induced systemic resistance (ISR) in plants. This type of resistance involves complex mechanisms that confer protection to the plant against pathogen attack. Additionally, it has been reported by several studies that ISR and Fe deficiency responses are modulated by common pathways, involving some phytohormones and signaling molecules, like ethylene and nitric oxide (NO). The aim of this study was to determine whether the nonpathogenic strain of Fusarium oxysporum FO12 can induce Fe deficiency responses in cucumber (Cucumis sativus L.) plants. Our results demonstrate that the root inoculation of cucumber plants with the FO12 strain promotes plant growth after several days of cultivation, as well as rhizosphere acidification and enhancement of ferric reductase activity. Moreover, Fe-related genes, such as FRO1, IRT1 and HA1, are upregulated at certain times after FO12 inoculation either upon Fe-deficiency or Fe-sufficient conditions. Furthermore, it has been found that this fungus colonizes root cortical tissues, promoting the upregulation of ethylene synthesis genes and NO production in the root subapical regions. To better understand the effects of the FO12 strain on field conditions, cucumber plants were inoculated and cultivated in a calcareous soil under greenhouse conditions. The results obtained show a modification of some physiological parameters in the inoculated plants, such as flowering and reduction of tissue necrosis. Overall, the results suggest that the FO12 strain could have a great potential as a Fe biofertilizer and biostimulant.


Asunto(s)
Cucumis sativus , Fusarium , Cucumis sativus/genética , Raíces de Plantas/metabolismo , Hierro/metabolismo , Etilenos/metabolismo
7.
Front Microbiol ; 14: 1129721, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36846808

RESUMEN

Nitrogen (N) and phosphorus (P) deficiencies are two of the most agronomic problems that cause significant decrease in crop yield and quality. N and P chemical fertilizers are widely used in current agriculture, causing environmental problems and increasing production costs. Therefore, the development of alternative strategies to reduce the use of chemical fertilizers while maintaining N and P inputs are being investigated. Although dinitrogen is an abundant gas in the atmosphere, it requires biological nitrogen fixation (BNF) to be transformed into ammonium, a nitrogen source assimilable by living organisms. This process is bioenergetically expensive and, therefore, highly regulated. Factors like availability of other essential elements, as phosphorus, strongly influence BNF. However, the molecular mechanisms of these interactions are unclear. In this work, a physiological characterization of BNF and phosphorus mobilization (PM) from an insoluble form (Ca3(PO4)2) in Azotobacter chroococcum NCIMB 8003 was carried out. These processes were analyzed by quantitative proteomics in order to detect their molecular requirements and interactions. BNF led to a metabolic change beyond the proteins strictly necessary to carry out the process, including the metabolism related to other elements, like phosphorus. Also, changes in cell mobility, heme group synthesis and oxidative stress responses were observed. This study also revealed two phosphatases that seem to have the main role in PM, an exopolyphosphatase and a non-specific alkaline phosphatase PhoX. When both BNF and PM processes take place simultaneously, the synthesis of nitrogenous bases and L-methionine were also affected. Thus, although the interdependence is still unknown, possible biotechnological applications of these processes should take into account the indicated factors.

8.
PLoS One ; 17(12): e0261027, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36490238

RESUMEN

Morphological and genetic analyses of species of Australoheros focusing on those distributed in coastal rivers from the Rio de La Plata north to the Rio Buranhém, support recognition of 17 valid species in the genus. Eight species are represented in coastal rivers: A acaroides, A. facetus, A. ipatinguensis, A. oblongus, A. ribeirae, and A. sanguineus are validated from earlier descriptions. Australoheros mboapari is a new species from the Rio Taquari in the Rio Jacuí drainage. Australoheros ricani is a new species from the upper Rio Jacuí. Specimens from the Rio Yaguarón and Rio Tacuary, affluents of Laguna Merín, and tributaries of the Rio Negro, tributary of the Rio Uruguay are assigned to A. minuano pending critical data on specimens from the type locality of A. minuano. Australoheros taura is a junior synonym of A. acaroides. Australoheros autrani, A. saquarema, A. capixaba, A. macaensis, A. perdi, and A. muriae are junior synonyms of A. ipatinguensis. Heros autochthon, A. mattosi, A. macacuensis, A. montanus, A. tavaresi, A. paraibae, and A. barbosae, are junior synonyms of A. oblongus. Heros jenynsii is a junior synonym of A. facetus.


Asunto(s)
Cíclidos , Animales , Ríos , Filogenia , América del Sur , Uruguay , Brasil
9.
Front Plant Sci ; 13: 971773, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105702

RESUMEN

When plants suffer from Fe deficiency, they develop morphological and physiological responses, mainly in their roots, aimed to facilitate Fe mobilization and uptake. Once Fe has been acquired in sufficient quantity, the responses need to be switched off to avoid Fe toxicity and to conserve energy. Several hormones and signaling molecules, such as ethylene, auxin and nitric oxide, have been involved in the activation of Fe deficiency responses in Strategy I plants. These hormones and signaling molecules have almost no effect when applied to plants grown under Fe-sufficient conditions, which suggests the existence of a repressive signal related to the internal Fe content. The nature of this repressive signal is not known yet many experimental results suggest that is not related to the whole root Fe content but to some kind of Fe compound moving from leaves to roots through the phloem. After that, this signal has been named LOng-Distance Iron Signal (LODIS). Very recently, a novel family of small peptides, "IRON MAN" (IMA), has been identified as key components of the induction of Fe deficiency responses. However, the relationship between LODIS and IMA peptides is not known. The main objective of this work has been to clarify the relationship between both signals. For this, we have used Arabidopsis wild type (WT) Columbia and two of its mutants, opt3 and frd3, affected, either directly or indirectly, in the transport of Fe (LODIS) through the phloem. Both mutants present constitutive activation of Fe acquisition genes when grown in a Fe-sufficient medium despite the high accumulation of Fe in their roots. Arabidopsis WT Columbia plants and both mutants were treated with foliar application of Fe, and later on the expression of IMA and Fe acquisition genes was analyzed. The results obtained suggest that LODIS may act upstream of IMA peptides in the regulation of Fe deficiency responses in roots. The possible regulation of IMA peptides by ethylene has also been studied. Results obtained with ethylene precursors and inhibitors, and occurrence of ethylene-responsive cis-acting elements in the promoters of IMA genes, suggest that IMA peptides could also be regulated by ethylene.

10.
Front Plant Sci ; 13: 968665, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035680

RESUMEN

To cope with nutrient scarcity, plants generally follow two main complementary strategies. On the one hand, they can slow down growing, mainly shoot growth, to diminish the demand of nutrients. We can call this strategy as "stop growing." On the other hand, plants can develop different physiological and morphological responses, mainly in their roots, aimed to facilitate the acquisition of nutrients. We can call this second strategy as "searching for nutrients." Both strategies are compatible and can function simultaneously but the interconnection between them is not yet well-known. In relation to the "stop growing" strategy, it is known that the TOR (Target Of Rapamycin) system is a central regulator of growth in response to nutrients in eukaryotic cells. TOR is a protein complex with kinase activity that promotes protein synthesis and growth while some SnRK (Sucrose non-fermenting 1-Related protein Kinases) and GCN (General Control Non-derepressible) kinases act antagonistically. It is also known that some SnRKs and GCNs are activated by nutrient deficiencies while TOR is active under nutrient sufficiency. In relation to the "searching for nutrients" strategy, it is known that the plant hormone ethylene participates in the activation of many nutrient deficiency responses. In this Mini Review, we discuss the possible role of ethylene as the hub connecting the "stop growing" strategy and the "searching for nutrients" strategy since very recent results also suggest a clear relationship of ethylene with the TOR system.

11.
Iheringia, Sér. zool ; 1122022. mapas, ilus, tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1380480

RESUMEN

A identidade de Psalidodon eigenmanniorum (Cope, 1894) e a possibilidade de se constituir em mais de uma espécie é testada através de análises da morfometria (19 medidas), dos caracteres merísticos (14 contagens) e do padrão de colorido de 705 exemplares provenientes dos sistemas dos rios Tramandaí/Mampituba, da laguna dos Patos e drenagem do baixo rio Uruguai. Foram diafanizados e corados 40 exemplares. Os dados morfométricos foram utilizados na Análise de Componentes Principais, Análise Discriminante, Morfometria Geométrica e Função Discriminante. As análises foram feitas considerando os sexos em separado dentro de cada sistema hidrográfico, bem como comparando as populações entre os sistemas hidrográficos e finalmente no conjunto de sistemas representando a área de ocorrência da espécie. A partir dos dados analisados não foram encontradas diferenças entre os sexos. Os resultados mostraram variação morfológica que não sustenta o reconhecimento de possíveis espécies crípticas. A variação encontrada nos dados merísticos, morfométricos e no padrão de colorido justifica a redescrição da espécie. Os resultados das comparações entre as populações indicaram variações nesses caracteres indicando que a espécie possui considerável plasticidade fenotípica.(AU)


The identity of Psalidodon eigenmanniorum (Cope, 1894) and the possibility of constituting more than one species is tested through analyzes of morphometry (19 measurements), meristic characters (14 counts) and the color pattern of 705 specimens from the Tramandaí/Mampituba, from the Patos lagoon and from the lower Uruguay River drainage. Forty specimens were cleared and stained. Morphometric data were used in Principal Component Analysis, Discriminant Analysis, Geometric Morphometry and Discriminant Function. The analysis was carried out considering the sexes separately within each hydrographic system, as well as comparing the populations between the hydrographic systems and finally in the set of systems representing the area of occurrence of the species. No differences were found between the sexes in the analyzed data. The results showed morphological variation that does not support the recognition of possible cryptic species. The variation found in meristic, morphometric and color pattern data justifies the redescription of the species. The species is described to the aforementioned drainages, and the results demonstrate its phenotypic plasticity.(AU)


Asunto(s)
Animales , Masculino , Femenino , Análisis de Componente Principal/métodos , Characidae/clasificación , Análisis Discriminante , Variación Biológica Poblacional
13.
Microorganisms ; 9(12)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34946203

RESUMEN

Iron (Fe) deficiency is a first-order agronomic problem that causes a significant decrease in crop yield and quality. Paradoxically, Fe is very abundant in most soils, mainly in its oxidized form, but is poorly soluble and with low availability for plants. In order to alleviate this situation, plants develop different morphological and physiological Fe-deficiency responses, mainly in their roots, to facilitate Fe mobilization and acquisition. Even so, Fe fertilizers, mainly Fe chelates, are widely used in modern agriculture, causing environmental problems and increasing the costs of production, due to the high prices of these products. One of the most sustainable and promising alternatives to the use of agrochemicals is the better management of the rhizosphere and the beneficial microbial communities presented there. The main objective of this research has been to evaluate the ability of several yeast species, such as Debaryomyces hansenii, Saccharomyces cerevisiae and Hansenula polymorpha, to induce Fe-deficiency responses in cucumber plants. To date, there are no studies on the roles played by yeasts on the Fe nutrition of plants. Experiments were carried out with cucumber plants grown in a hydroponic growth system. The effects of the three yeast species on some of the most important Fe-deficiency responses developed by dicot (Strategy I) plants, such as enhanced ferric reductase activity and Fe2+ transport, acidification of the rhizosphere, and proliferation of subapical root hairs, were evaluated. The results obtained show the inductive character of the three yeast species, mainly of Debaryomyces hansenii and Hansenula polymorpha, on the Fe-deficiency responses evaluated in this study. This opens a promising line of study on the use of these microorganisms as Fe biofertilizers in a more sustainable and environmentally friendly agriculture.

14.
Int J Mol Sci ; 22(9)2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-34063156

RESUMEN

Iron (Fe) and phosphorus (P) are two essential elements for plant growth. Both elements are abundant in soils but with poor availability for plants, which favor their acquisition by developing morphological and physiological responses in their roots. Although the regulation of the genes related to these responses is not totally known, ethylene (ET) and nitric oxide (NO) have been involved in the activation of both Fe-related and P-related genes. The common involvement of ET and NO suggests that they must act in conjunction with other specific signals, more closely related to each deficiency. Among the specific signals involved in the regulation of Fe- or P-related genes have been proposed Fe-peptides (or Fe ion itself) and microRNAs, like miR399 (P), moving through the phloem. These Fe- or P-related phloem signals could interact with ET/NO and confer specificity to the responses to each deficiency, avoiding the induction of the specific responses when ET/NO increase due to other nutrient deficiencies or stresses. Besides the specificity conferred by these signals, ET itself could confer specificity to the responses to Fe- or P-deficiency by acting through different signaling pathways in each case. Given the above considerations, there are preliminary results suggesting that ET could regulate different nutrient responses by acting both in conjunction with other signals and through different signaling pathways. Because of the close relationship among these two elements, a better knowledge of the physiological and molecular basis of their interaction is necessary to improve their nutrition and to avoid the problems associated with their misuse. As examples of this interaction, it is known that Fe chlorosis can be induced, under certain circumstances, by a P over- fertilization. On the other hand, Fe oxides can have a role in the immobilization of P in soils. Qualitative and quantitative assessment of the dynamic of known Fe- and P-related genes expression, selected ad hoc and involved in each of these deficiencies, would allow us to get a profound knowledge of the processes that regulate the responses to both deficiencies. The better knowledge of the regulation by ET of the responses to these deficiencies is necessary to properly understand the interactions between Fe and P. This will allow the obtention of more efficient varieties in the absorption of P and Fe, and the use of more rational management techniques for P and Fe fertilization. This will contribute to minimize the environmental impacts caused by the use of P and Fe fertilizers (Fe chelates) in agriculture and to adjust the costs for farmers, due to the high prices and/or scarcity of Fe and P fertilizers. This review aims to summarize the latest advances in the knowledge about Fe and P deficiency responses, analyzing the similarities and differences among them and considering the interactions among their main regulators, including some hormones (ethylene) and signaling substances (NO and GSNO) as well as other P- and Fe-related signals.


Asunto(s)
Etilenos/metabolismo , Deficiencias de Hierro , Óxido Nítrico/metabolismo , Fósforo/deficiencia , Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas/genética
15.
Gigascience ; 10(6)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34061207

RESUMEN

BACKGROUND: The amount of data and behavior changes in society happens at a swift pace in this interconnected world. Consequently, machine learning algorithms lose accuracy because they do not know these new patterns. This change in the data pattern is known as concept drift. There exist many approaches for dealing with these drifts. Usually, these methods are costly to implement because they require (i) knowledge of drift detection algorithms, (ii) software engineering strategies, and (iii) continuous maintenance concerning new drifts. RESULTS: This article proposes to create Driftage: a new framework using multi-agent systems to simplify the implementation of concept drift detectors considerably and divide concept drift detection responsibilities between agents, enhancing explainability of each part of drift detection. As a case study, we illustrate our strategy using a muscle activity monitor of electromyography. We show a reduction in the number of false-positive drifts detected, improving detection interpretability, and enabling concept drift detectors' interactivity with other knowledge bases. CONCLUSION: We conclude that using Driftage, arises a new paradigm to implement concept drift algorithms with multi-agent architecture that contributes to split drift detection responsability, algorithms interpretability and more dynamic algorithms adaptation.


Asunto(s)
Algoritmos , Aprendizaje Automático , Programas Informáticos
16.
Front Plant Sci ; 12: 643585, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33859661

RESUMEN

To cope with P, S, or Fe deficiency, dicot plants, like Arabidopsis, develop several responses (mainly in their roots) aimed to facilitate the mobilization and uptake of the deficient nutrient. Within these responses are the modification of root morphology, an increased number of transporters, augmented synthesis-release of nutrient solubilizing compounds and the enhancement of some enzymatic activities, like ferric reductase activity (FRA) or phosphatase activity (PA). Once a nutrient has been acquired in enough quantity, these responses should be switched off to minimize energy costs and toxicity. This implies that they are tightly regulated. Although the responses to each deficiency are induced in a rather specific manner, crosstalk between them is frequent and in such a way that P, S, or Fe deficiency can induce responses related to the other two nutrients. The regulation of the responses is not totally known but some hormones and signaling substances have been involved, either as activators [ethylene (ET), auxin, nitric oxide (NO)], or repressors [cytokinins (CKs)]. The plant hormone ET is involved in the regulation of responses to P, S, or Fe deficiency, and this could partly explain the crosstalk between them. In spite of these crosslinks, it can be hypothesized that, to confer the maximum specificity to the responses of each deficiency, ET should act in conjunction with other signals and/or through different transduction pathways. To study this latter possibility, several responses to P, S, or Fe deficiency have been studied in the Arabidopis wild-type cultivar (WT) Columbia and in some of its ethylene signaling mutants (ctr1, ein2-1, ein3eil1) subjected to the three deficiencies. Results show that key elements of the ET transduction pathway, like CTR1, EIN2, and EIN3/EIL1, can play a role in the crosstalk among nutrient deficiency responses.

17.
JMIR Med Inform ; 8(5): e15407, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32432551

RESUMEN

BACKGROUND: Although alarm safety is a critical issue that needs to be addressed to improve patient care, hospitals have not given serious consideration about how their staff should be using, setting, and responding to clinical alarms. Studies have indicated that 80%-99% of alarms in hospital units are false or clinically insignificant and do not represent real danger for patients, leading caregivers to miss relevant alarms that might indicate significant harmful events. The lack of use of any intelligent filter to detect recurrent, irrelevant, and/or false alarms before alerting health providers can culminate in a complex and overwhelming scenario of sensory overload for the medical team, known as alarm fatigue. OBJECTIVE: This paper's main goal is to propose a solution to mitigate alarm fatigue by using an automatic reasoning mechanism to decide how to calculate false alarm probability (FAP) for alarms and whether to include an indication of the FAP (ie, FAP_LABEL) with a notification to be visualized by health care team members designed to help them prioritize which alerts they should respond to next. METHODS: We present a new approach to cope with the alarm fatigue problem that uses an automatic reasoner to decide how to notify caregivers with an indication of FAP. Our reasoning algorithm calculates FAP for alerts triggered by sensors and multiparametric monitors based on statistical analysis of false alarm indicators (FAIs) in a simulated environment of an intensive care unit (ICU), where a large number of warnings can lead to alarm fatigue. RESULTS: The main contributions described are as follows: (1) a list of FAIs we defined that can be utilized and possibly extended by other researchers, (2) a novel approach to assess the probability of a false alarm using statistical analysis of multiple inputs representing alarm-context information, and (3) a reasoning algorithm that uses alarm-context information to detect false alarms in order to decide whether to notify caregivers with an indication of FAP (ie, FAP_LABEL) to avoid alarm fatigue. CONCLUSIONS: Experiments were conducted to demonstrate that by providing an intelligent notification system, we could decide how to identify false alarms by analyzing alarm-context information. The reasoner entity we described in this paper was able to attribute FAP values to alarms based on FAIs and to notify caregivers with a FAP_LABEL indication without compromising patient safety.

18.
Mol Phylogenet Evol ; 145: 106711, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31857199

RESUMEN

With 149 currently recognized species, Hypostomus is one of the most species-rich catfish genera in the world, widely distributed over most of the Neotropical region. To clarify the evolutionary history of this genus, we reconstructed a comprehensive phylogeny of Hypostomus based on four nuclear and two mitochondrial markers. A total of 206 specimens collected from the main Neotropical rivers were included in the present study. Combining morphology and a Bayesian multispecies coalescent (MSC) approach, we recovered 85 previously recognized species plus 23 putative new species, organized into 118 'clusters'. We presented the Cluster Credibility (CC) index that provides numerical support for every hypothesis of cluster delimitation, facilitating delimitation decisions. We then examined the correspondence between the morphologically identified species and their inter-specific COI barcode pairwise divergence. The mean COI barcode divergence between morphological sisters species was 1.3 ± 1.2%, and only in 11% of the comparisons the divergence was ≥2%. This indicates that the COI barcode threshold of 2% classically used to delimit fish species would seriously underestimate the number of species in Hypostomus, advocating for a taxon-specific COI-based inter-specific divergence threshold to be used only when approximations of species richness are needed. The phylogeny of the 108 Hypostomus species, together with 35 additional outgroup species, confirms the monophyly of the genus. Four well-supported main lineages were retrieved, hereinafter called super-groups: Hypostomus cochliodon, H. hemiurus, H. auroguttatus, and H. plecostomus super-groups. We present a compilation of diagnostic characters for each super-group. Our phylogeny lays the foundation for future studies on biogeography and on macroevolution to better understand the successful radiation of this Neotropical fish genus.


Asunto(s)
Bagres/clasificación , Evolución Molecular , Animales , Teorema de Bayes , Bagres/genética , Código de Barras del ADN Taxonómico , Complejo IV de Transporte de Electrones/genética , Proteínas de la Membrana/genética , Mitocondrias/genética , Proteínas del Tejido Nervioso/genética , Filogenia , Especificidad de la Especie
19.
J Med Internet Res ; 21(11): e15406, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31769762

RESUMEN

BACKGROUND: Informed estimates claim that 80% to 99% of alarms set off in hospital units are false or clinically insignificant, representing a cacophony of sounds that do not present a real danger to patients. These false alarms can lead to an alert overload that causes a health care provider to miss important events that could be harmful or even life-threatening. As health care units become more dependent on monitoring devices for patient care purposes, the alarm fatigue issue has to be addressed as a major concern for the health care team as well as to enhance patient safety. OBJECTIVE: The main goal of this paper was to propose a feasible solution for the alarm fatigue problem by using an automatic reasoning mechanism to decide how to notify members of the health care team. The aim was to reduce the number of notifications sent by determining whether or not to group a set of alarms that occur over a short period of time to deliver them together, without compromising patient safety. METHODS: This paper describes: (1) a model for supporting reasoning algorithms that decide how to notify caregivers to avoid alarm fatigue; (2) an architecture for health systems that support patient monitoring and notification capabilities; and (3) a reasoning algorithm that specifies how to notify caregivers by deciding whether to aggregate a group of alarms to avoid alarm fatigue. RESULTS: Experiments were used to demonstrate that providing a reasoning system can reduce the notifications received by the caregivers by up to 99.3% (582/586) of the total alarms generated. Our experiments were evaluated through the use of a dataset comprising patient monitoring data and vital signs recorded during 32 surgical cases where patients underwent anesthesia at the Royal Adelaide Hospital. We present the results of our algorithm by using graphs we generated using the R language, where we show whether the algorithm decided to deliver an alarm immediately or after a delay. CONCLUSIONS: The experimental results strongly suggest that this reasoning algorithm is a useful strategy for avoiding alarm fatigue. Although we evaluated our algorithm in an experimental environment, we tried to reproduce the context of a clinical environment by using real-world patient data. Our future work is to reproduce the evaluation study based on more realistic clinical conditions by increasing the number of patients, monitoring parameters, and types of alarm.


Asunto(s)
Adaptación Psicológica/fisiología , Inteligencia Artificial/estadística & datos numéricos , Fatiga/terapia , Monitoreo Fisiológico/métodos , Algoritmos , Alarmas Clínicas , Humanos , Reproducibilidad de los Resultados
20.
Front Plant Sci ; 10: 1237, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31649701

RESUMEN

Iron (Fe) and phosphorus (P) are two essential mineral nutrients whose acquisition by plants presents important environmental and economic implications. Both elements are abundant in most soils but scarcely available to plants. To prevent Fe or P deficiency dicot plants initiate morphological and physiological responses in their roots aimed to specifically acquire these elements. The existence of common signals in Fe and P deficiency pathways suggests the signaling factors must act in conjunction with distinct nutrient-specific signals in order to confer tolerance to each deficiency. Previous works have shown the existence of cross talk between responses to Fe and P deficiency, but details of the associated signaling pathways remain unclear. Herein, the impact of foliar application of either P or Fe on P and Fe responses was studied in P- or Fe-deficient plants of Arabidopsis thaliana, including mutants exhibiting altered Fe or P homeostasis. Ferric reductase and acid phosphatase activities in roots were determined as well as the expression of genes related to P and Fe acquisition. The results obtained showed that Fe deficiency induces the expression of P acquisition genes and phosphatase activity, whereas P deficiency induces the expression of Fe acquisition genes and ferric reductase activity, although only transitorily. Importantly, these responses were reversed upon foliar application of either Fe or P on nutrient-starved plants. Taken together, the results reveal interactions between P- and Fe-related phloem signals originating in the shoots that likely interact with hormones in the roots to initiate adaptive mechanisms to tolerate deficiency of each nutrient.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...