Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38592963

RESUMEN

Under iron (Fe)-limited conditions, plants have developed strategies for acquiring this essential micronutrient. Several Fe sources have been studied as potential fertilizers, with Fe synthetic chelates being the most used to prevent and correct Fe chlorosis in crops. The determination of the activity of the Fe chelate reductase (FCR) enzyme has long been described in the literature to understand the efficiency of Strategy I plants in acquiring Fe from fertilizers under deficient conditions. Other experiments have focused on the translocation of Fe to the plant to define the effectiveness of Fe fertilizers. Yet, both assays are relevant in knowing the capacity of a novel Fe source and other compounds alleviating Fe chlorosis in Strategy I plants. This work reviews the methodologies that are used in FCR assays to evaluate novel Fe fertilizers, including the factors modulating the results obtained for FCR assay activity, such as the Fe substrate, the Fe level during the growing period and during the FCR assay, the pH, the choice of an in vivo or in vitro method, and the plant species. A discussion of the benefits of the concurrence of FCR and Fe uptake assays is then presented alongside a proposed methodology for assessing the effectiveness of Fe fertilizers, emphasizing the importance of understanding chemical and physiological plant interactions. This methodology unifies key factors that modify FCR activity and combines these with the use of the 57Fe tracer to enhance our comprehension of the efficacy of Fe-based fertilizers' effectiveness in alleviating Fe chlorosis. This comprehensive approach not only contributes to the fundamental understanding of Fe-deficient Strategy I plants but also establishes a robust method for determining the efficiency of novel sources for correcting Fe deficiency in plants.

2.
BMC Plant Biol ; 23(1): 634, 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38066451

RESUMEN

The conversion of an agroforestry based agricultural system to a monocropping farming system influences the distribution and composition of arbuscular mycorrhizal fungi (AMF). The aim of this paper was to analyze AMF species diversity, spore density, and root colonization across different agroforestry practices (AFP) in southern Ethiopia. Soil and root samples were collected from homegarden, cropland, woodlot, and trees on soil and water conservation-based AFP. AMF spores were extracted from the soil and species diversity was evaluated using morphological analysis and root colonization from root samples. The AMF spore density, root colonization and composition were significantly different among the AFP (P < 0.05). In this study, 43 AMF morphotypes belonging to eleven genera were found, dominated by Acaulospora (32.56%), followed by Claroideoglomus (18.60%). Home gardens had the highest spore density (7641.5 spore100 g- 1 dry soil) and the lowest was recorded in croplands (683.6 spore100 g- 1 dry soil). Woodlot had the highest root colonization (54.75%), followed by homegarden (48.25%). The highest isolation frequency (63.63%) was recorded for Acaulospora scrobiculata. The distribution of AMF species and diversity were significantly related to soil total nitrogen and organic carbon. The homegarden and woodlot AFP were suitable for soil AMF reserve and conservation.


Asunto(s)
Glomeromycota , Micorrizas , Etiopía , alfa-Fetoproteínas , Hongos , Esporas Fúngicas , Suelo , Microbiología del Suelo , Raíces de Plantas/microbiología
3.
Plants (Basel) ; 12(23)2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38068689

RESUMEN

The application of synthetic iron chelates to overcome iron deficiency in crops is leading to a high impact on the environment, making it necessary to find more friendly fertilizers. A promising alternative is the application of biodegradable iron chelates, such as those based on siderophores. In the present work, seven bacterial strains of the genus Pseudomonas were selected for their ability to secrete pyoverdine, a siderophore with a high affinity for iron, which could be used as a biofertilizer. The concentration of siderophores secreted by each bacterium expressed as desferrioxamine B equivalents, and the pyoverdine concentration was determined. Their potential as Fe biofertilizers was determined based on their capacity to complex Fe, determining the maximum iron complexation capacity at alkaline pH and selecting the RMC4 strain. The biostimulant capacity of the RMC4 strain was evaluated through the secretion of organic acids such as the hormone Indol-3-acetic acid or glutamic acid, among others, in a kinetic assay. Finally, the genome of RMC4 was determined, and the strain was identified as Pseudomonas monsensis. The annotated genome was screened for genes and gene clusters implicated in biofertilization and plant growth promotion. Besides iron mobilization, genes related to phosphorus solubilization, production of phytohormones and biological control, among others, were observed, indicating the suitability of RMC4 as an inoculant. In conclusion, RMC4 and its siderophores are promising sources for Fe biofertilization in agriculture.

4.
Front Plant Sci ; 13: 1017925, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36582635

RESUMEN

Introduction: A sustainable agriculture and the great increase in consumers of organic products in the last years make the use of natural products one of the main challenges of modern agriculture. This is the reason that the use of products based on seaweed extracts has increased exponentially, specifically brown seaweeds, including Ascophyllum nodosum and Ecklonia maxima. Methods: In this study, the chemical composition of 20 commercial seaweed extract products used as biostimulants and their antifungal activity against two common postharvest pathogens (Botrytis cinerea and Penicillium digitatum) from fruits were evaluated. Data were processed using chemometric techniques based on linear and non-linear models. Results and discussion: The results showed that the algae species and the percentage of seaweed had a significant effect on the final composition of the products. In addition, great disparity was observed between formulations with similar labeling and antifungal effect of most of the analyzed products against some of the tested pathogens. These findings indicate the need for further research.

5.
J Agric Food Chem ; 69(51): 15746-15754, 2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-34908401

RESUMEN

The environmental risk of the application of synthetic chelates has favored the implementation of new biodegradable ligands to correct Fe-deficient plants. This study developed and validated an analytical method for determination of a new prototype iron chelate─Fe(III)-benzeneacetate, 2-hydroxy-α-[(2-hydroxyethyl)amino]─(BHH/Fe3+) based on liquid chromatography with diode array detection, as a potential sustainable alternative. Chromatographic analysis was performed on a LiChrospher RP-18 in reverse-phase mode, with a mobile phase consisting of a mixture of acetonitrile (solvent A) and sodium borate buffer 0.20 mM at pH = 8 (solvent B) at a flow rate of 1.0 mL/min in isocratic elution mode. This method was fully validated and found to be linear from the limit of quantification (LOQ) to 50 mg/L and precise (standard deviation below 5%). The proposed method was demonstrated to be selective, precise, and robust. The developed methodology indicated that it is suitable for the quantification of iron chelate BHH/Fe3+.


Asunto(s)
Fertilizantes , Quelantes del Hierro , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Solventes
6.
J Sci Food Agric ; 101(10): 4207-4219, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33423272

RESUMEN

BACKGROUND: The aim of this work was to study the possible synergic effect between mixtures with iron leonardite humate (L/Fe3+ ) and synthetic chelates iron (Ch/Fe3+ : o,oEDDHA /Fe3+ or HBED/Fe3+ ), and to reevaluate the classical chelate shuttle-effect model. Different molar ratios of L/Fe3+ :Ch/Fe3+ , different doses, and different sampling times were used in hydroponic and soil experiments using soybean (Glycine max) as a model Strategy I crop in calcareous conditions. Ligand competition between the humate and chelating agents was also examined. RESULTS: Iron humate participates in the chelate shuttle mechanism, providing available Fe to the chelating agent and then to the plants, showing a slight synergic effect. After a few days, the contribution of the chelates to the Fe nutrition decreases substantially, but the contribution of the humates is maintained. CONCLUSIONS: The most efficient ratio was two parts of iron humates and one part of iron chelate. In particular, HBED/Fe3+ was the most suitable iron chelate because its lasting effect fits the iron humate long-term effect better. The soluble iron in soil increased and the shoot-to-root iron translocation improved due to a synergic effect by a shuttle effect exerted by iron chelate in the mixture. © 2021 Society of Chemical Industry.


Asunto(s)
Glycine max/metabolismo , Quelantes del Hierro/metabolismo , Hierro/metabolismo , Minerales/metabolismo , Ácido Edético/análogos & derivados , Ácido Edético/química , Ácido Edético/metabolismo , Fertilizantes/análisis , Hidroponía , Hierro/química , Quelantes del Hierro/química , Minerales/química , Compuestos Organometálicos/química , Compuestos Organometálicos/metabolismo , Suelo/química , Glycine max/química , Glycine max/crecimiento & desarrollo
7.
J Sci Food Agric ; 101(11): 4662-4671, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-33491224

RESUMEN

BACKGROUND: The environmental risk of the application of synthetic chelates has furthered the implementation of biodegradable complexes to correct manganese (Mn)-deficient plants. This study used the biodegradable ligands of heptagluconate (G7) and gluconate (G6) to test the influence of the Mn2+ :ligand ratio on their fertilizers' capacity to provide Mn to plants. The efficacy of these complexes to correct Mn-deficient soybean was evaluated in hydroponics and calcareous soil conditions and compared with the synthetic chelate EDTA (ethylenediaminetetraacetic acid). RESULTS: This study demonstrated that G7 was a biodegradable alternative to EDTA for supplying Mn, maintaining an adequate nutritional balance compared with G6, which reduced iron (Fe) uptake by the plants. The efficacy of the Mn complexes depended on both the ligand and the Mn:ligand ratio, with the 1:1 and 1:2 molar ratios of Mn2+ :G7 being the most effective complexes in the short term on the basis of their chemical structure and stability. CONCLUSION: The Mn2+ :G7 (1:1 and 1:2) complexes were found to be effective Mn sources for plant nutrition due to their chemical structures providing adequate stability in alkaline solution and their fast-action effect. © 2021 Society of Chemical Industry.


Asunto(s)
Gluconatos/metabolismo , Glycine max/metabolismo , Hierro/metabolismo , Manganeso/metabolismo , Ácido Edético/química , Ácido Edético/metabolismo , Fertilizantes/análisis , Hidroponía , Hierro/química , Quelantes del Hierro/química , Quelantes del Hierro/metabolismo , Ligandos
8.
Int J Biol Macromol ; 142: 163-171, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31525412

RESUMEN

Lignosulfonates (LSs) are by-products from the paper industry used as biodegradable fertilizers. However, metal-LS ability to provide micronutrients to crops is related to the stability of the complex and the amount of metal complexed. This work evaluated these parameters using ultraviolet-visible (UV-Vis), Fourier-transform infrared (FTIR), and 13C-nuclear magnetic resonance (NMR), along with gel filtration chromatography (GFC) and high-performance size exclusion chromatography (HPSEC), for different spruce, eucalyptus, and pine LSs. GFC and HPSEC pointed out that the amount and type of complexed metal in the LS depends on the molecular weight, pH, and sulphite pulping processes. Both techniques indicated that the low molecular weight LS enriched with phenolic groups has the highest Fe(III) complexing capacity. Also, Fe(III)/LS showed the formation of high molecular weight compounds, whereas Zn(II)/LS and Mn(II)/LS complexes did not form aggregates. Metal-LS fractionation provided considerable information to identify LSs with potential fertilizer capacity and to assess the effectiveness of their complexes.


Asunto(s)
Cromatografía en Gel/métodos , Fertilizantes , Lignina/análogos & derivados , Metales , Fenómenos Químicos , Eucalyptus , Compuestos Férricos , Lignina/química , Micronutrientes , Peso Molecular , Pinus
9.
J Sci Food Agric ; 100(3): 1106-1117, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31667842

RESUMEN

BACKGROUND: The environmental risk from the application of synthetic chelates has led to the use of biodegradable complexes to correct Fe deficiency in plants. In this article, the Fe oxidation state, the Fe:ligand ratio, and the molecular weight distribution for heptagluconate (G7) and gluconate (G6) are considered as key factors for the efficacy of complexes as fertilizers. Complexes with different Fe:ligand ratios were prepared and analyzed by gel filtration chromatography (GFC). The ability of Fe:ligand ratios to provide Fe to tomato in hydroponics and soybean in calcareous soil was tested and compared with synthetic chelates (Fe3+ :HBED and Fe3+ :EDTA). RESULTS: G7 presented greater capacity to complex both Fe(II) and Fe(III) than G6, but the Fe(II) complexes exhibited poor stability at pH 9 and oxidation in solution. Gel filtration chromatography demonstrated the polynuclear nature of the Fe3+ :G7 at various ratios. The effectiveness of the Fe fertilizers depend on the Fe3+ :ligand ratio and the ligand type, the Fe3+ :G7 (1:1 and 1:2) being the most effective. Fe3+ :G7 (1:1) also presented a better response for the uptake of other micronutrients. CONCLUSION: Fe3+ :G7 molar ratios have been shown to be critical for plant Fe uptake under hydroponic conditions and with calcareous soil. Thus, the Fe3+ :G7 at equimolar ratio and 1:2 molar ratio can be an environmentally friendly alternative to less degradable synthetic chelates to correct Fe chlorosis in strategy I plants. © 2019 Society of Chemical Industry.


Asunto(s)
Quelantes/química , Fertilizantes/análisis , Gluconatos/química , Glycine max/crecimiento & desarrollo , Hierro/metabolismo , Suelo/química , Solanum lycopersicum/crecimiento & desarrollo , Quelantes/metabolismo , Gluconatos/metabolismo , Hidroponía/instrumentación , Hidroponía/métodos , Hierro/química , Ligandos , Solanum lycopersicum/metabolismo , Glycine max/metabolismo
10.
Front Plant Sci ; 10: 1335, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781134

RESUMEN

Currently, fertilization with synthetic chelates is the most effective agricultural practice to prevent iron (Fe) deficiencies in crops, especially in calcareous soils. Because these compounds are not biodegradable, they are persistent in the environment, and so, there is the risk of metal leaching from the soils. Thus, new, more environment-friendly efficient solutions are needed to solve iron-deficiency-induced chlorosis (IDIC) in crops grown in calcareous soils. Therefore, the central aim of this work was to prepare new freeze-dried Fe products, using a biotechnological-based process, from two siderophores bacterial (Azotobacter vinelandii and Bacillus subtilis) cultures (which previously evidenced high Fe complexation ability at pH 9) and test their capacity for amending IDIC of soybean grown in calcareous soils. Results have shown that A. vinelandii iron fertilizer was more stable and interacted less with calcareous soils and its components than B. subtilis one. This behavior was noticeable in pot experiments where chlorotic soybean plants were treated with both fertilizer products. Plants treated with A. vinelandii fertilizer responded more significantly than those treated with B. subtilis one, when evaluated by their growth (20% more dry mass than negative control) and chlorophyll development (30% higher chlorophyll index than negative control) and in most parameters similar to the positive control, ethylenediamine-di(o-hydroxyphenylacetic acid). On average, Fe content was also higher in A. vinelandii-treated plants than on B. subtilis-treated ones. Results suggest that this new siderophore-based formulation product, prepared from A. vinelandii culture, can be regarded as a possible viable alternative for replacing the current nongreen Fe-chelating fertilizers and may envisage a sustainable and environment-friendly mending IDIC of soybean plants grown in calcareous soils.

11.
Front Plant Sci ; 10: 413, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024589

RESUMEN

Iron deficiency is a frequent problem for many crops, particularly in calcareous soils and iron humates are commonly applied in the Mediterranean basin in spite of their lesser efficiency than iron synthetic chelates. Development and application of new fertilizers using nanotechnology are one of the potentially effective options of enhancing the iron humates, according to the sustainable agriculture. Particle size, pH, and kinetics constrain the iron humate efficiency. Thus, it is relevant to understand the iron humate mechanism in the plant-soil system linking their particle size, characterization and iron distribution in plant and soil using 57Fe as a tracer tool. Three hybrid nanomaterials (F, S, and M) were synthesized as iron-humic nanofertilizers (57Fe-NFs) from leonardite potassium humate and 57Fe used in the form of 57Fe(NO3)3 or 57Fe2(SO4)3. They were characterized using Mössbauer spectroscopy, X-ray diffraction (XRD), extended X-ray absorption fine structure spectroscopy (EXAFS), transmission electron microscopy (TEM) and tested for iron availability in a calcareous soil pot experiment carried out under growth chamber conditions. Three doses (35, 75, and 150 µmol pot-1) of each iron-humic material were applied to soybean iron deficient plants and their iron nutrition contributions were compared to 57FeEDDHA and leonardite potassium humate as control treatments. Ferrihydrite was detected as the main structure of all three 57Fe-NFs and the plants tested with iron-humic compounds exhibited continuous long-term statistically reproducible iron uptake and showed high shoot fresh weight. Moreover, the 57Fe from the humic nanofertilizers remained available in soil and was detected in soybean pods. The Fe-NFs offers a natural, low cost and environmental option to the traditional iron fertilization in calcareous soils.

12.
Sci Total Environ ; 647: 1508-1517, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30180356

RESUMEN

Iron deficiency in crops is usually prevented and cured by the application of synthetic Fe chelates such as EDTA/Fe and the o,o-EDDHA/Fe. However their persistence in soil calls for the implementation of new alternatives that present less of a risk to the environment. This study therefore evaluated the biodegradable chelating agent [S,S]-EDDS as a new source for Fe fertilisation in calcareous soils in relation to its chemical reactivity. The suitability of [S,S]-EDDS/Fe as an Fe fertiliser in a calcareous soil was investigated and compared to the traditional synthetic chelates EDTA/Fe and o,o-EDDHA/Fe. Plant experiments with soybean (Glycine max), 57Fe isotopic labelling, and batch incubations were conducted in a calcareous soil. The Fe concentration of plants treated with [S,S]-EDDS/Fe was similar to those treated with EDTA/Fe. A similar Fe concentration to the o,o-EDDHA/Fe treatment was achieved using a double dose of [S,S]-EDDS/Fe. Despite the degradation of [S,S]-EDDS limiting the durability of [S,S]-EDDS/Fe in soil, the Fe bound to the degradation products may be a determining factor in improving Fe uptake and translocation to leaves in plants treated with [S,S]-EDDS/Fe compared to other Fe sources. Speciation studies by modelling and batch experiments also supported the lower reactivity of [S,S]-EDDS/Fe with calcium compared to that of EDTA/Fe, possibly contributing to the permanence of [S,S]-EDDS/Fe in the calcareous soil. This study demonstrated for the first time, that [S,S]-EDDS may be an environmentally sustainable alternative to traditional synthetic chelating agents such as EDTA or o,o-EDDHA for curing Fe chlorosis in susceptible plants in calcareous soil.

13.
Sci Total Environ ; 647: 1586-1593, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30180362

RESUMEN

In order to find new greener solutions for iron (Fe) induced chlorosis, two new chelating agents, N,N-dihydroxy-N,N'-diisopropylhexanediamide (DPH) and Azotochelin (AZO), were assessed for its effectiveness in mending induced chlorosis in soybean (Glycine max). DPH-Fe and AZO-Fe complexes were firstly tested for their soil interactions and capability to maintain Fe in a bioavailable form. Secondly, 57Fe-chelates of DPH and AZO were applied to the soil in a pot experiment with chlorotic soybean plants. Their growth, SPAD chlorophyll index, and the Fe concentration in plant tissues and the remaining soil were evaluated. An isotope deconvolution analysis by using the concentration of the Fe isotopes was used to distinguish the Fe coming from soil and from the 57Fe labelled fertilizer treatments. AZO and DPH have shown different interactions with soil and its components, with AZO showing less interaction than DPH. The application of AZO and DPH resulted in SPAD increase and Fe content. However, it was found that the Fe in plants had not come from the fertilizer application, but instead from natural sources. This is likely due to dissolution phenomena aided by the chelates added. Overall, AZO and DPH have shown good results in amending Fe induced chlorosis in calcareous soils and for this reason should be regarded as good green-candidates for Fe plant nutrition in calcareous soils.


Asunto(s)
Glycine max/fisiología , Hexanos/química , Quelantes del Hierro/química , Lisina/análogos & derivados , Hierro , Lisina/química , Suelo/química , Glycine max/crecimiento & desarrollo
14.
Plant Physiol Biochem ; 118: 579-588, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28787660

RESUMEN

The growing concern over the environmental risk of synthetic chelate application promotes the search for alternatives in Fe fertilization, such as biodegradable chelating agents and natural complexing agents. In this work, plant responses to the application of several Fe treatments (chelates and complexes) was analyzed to study their potential use in Fe fertilization under calcareous conditions. Thus, the root ferric chelate reductase (FCR) activity of soybean (Glycine max cv. Klaxon) plants was determined, and the effectiveness of the Fe chelates and complexes assessed in a pot experiment, by SPAD and fluorescence induction measurements, and the determination of Fe distribution in plant and soil. Additionally, 57Fe Mössbauer spectroscopy was conducted to identify the Fe forms present in the soybean roots. The highest FCR activity was observed for the chelates EDDS/Fe3+ and IDHA/Fe3+; while no activity was observed when using complexes as Fe substrates. In contrast to the FCR data, the pot experiment confirmed that the o,oEDDHA/Fe3+ is the most effective treatment, and the complexes LS/Fe3+ and GA/Fe3+ are able to alleviate Fe chlorosis, also indicated by SPAD data and the maximal quantum efficiency of photosystem II reaction centers as vitality parameters, and the enhanced plant uptake of Fe from natural sources.


Asunto(s)
Glycine max/metabolismo , Quelantes del Hierro/farmacología , Hierro , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Hierro/metabolismo , Hierro/farmacología , Quelantes del Hierro/farmacocinética
15.
J Agric Food Chem ; 65(31): 6554-6563, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28715216

RESUMEN

Novel, cheap and ecofriendly fertilizers that solve the usual iron deficiency problem in calcareous soil are needed. The aim of this work is to study the long-term effect of an iron leonardite fertilizer on citrus nutrition taking into account a properly characterization, kinetic response with a ligand competition experiment, efficiency assessment using Saccharomyces cerevisiae strain and finally, in field conditions with citrus as test plants. Its efficiency was compared with the synthetic iron chelate FeEDDHA. Leonardite iron humate (LIH) is mainly humic acid with a high-condensed structure where iron is present as ferrihydrite and Fe3+ polynuclear compounds stabilized by organic matter. Iron and humic acids form aggregates that decrease the iron release from these kinds of fertilizers. Furthermore, LIH repressed almost 50% of the expression of FET3, FTR1, SIT1, and TIS11 genes in Saccharomyces cerevisiae cells, indicating increasing iron provided in cells and improved iron nutrition in citrus.


Asunto(s)
Citrus/química , Sustancias Húmicas/análisis , Hierro/análisis , Minerales/análisis , Citrus/metabolismo , Fertilizantes/análisis , Hierro/metabolismo , Minerales/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Suelo/química
16.
J Sci Food Agric ; 97(9): 2773-2781, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27754551

RESUMEN

BACKGROUND: Efficient use of Fe chelates is crucial to avoid environmental risks and reduce economic losses. HBED/Fe3+ has been recently approved by the European Union for soil fertilisation, but studies delving into the best timing for its application are necessary. In this work, a batch incubation experiment and two biological experiments were developed to determine the optimal physiological stage for a sustainable application of HBED/Fe3+ in soil fertilisation compared with EDDHA/Fe3+ fertilisers using 57 Fe. RESULTS: HBED/Fe3+ demonstrated a high durability in soils and soil materials, maintaining more than 80% of Fe chelated after 70 days, and its application at an early physiological stage resulted in a high Fe accumulation in soybean and soil after 36 days. In contrast, the stability of EDDHA/Fe3+ decreased because of the retention of its lowest stable isomers. The best timing for chelates application was confirmed in a 52 day experiment. The application of HBED/Fe3+ at the early stage increased the Fe translocation to fruits; while o,o-EDDHA/Fe3+ accumulated more Fe in fruits when added at the fructification stage. CONCLUSION: The high HBED/Fe3+ stability in calcareous soil requires a differentiate application timing, and its addition at early physiological stages leads into the most efficient fertilisation. © 2016 Society of Chemical Industry.


Asunto(s)
Preparaciones de Acción Retardada/química , Fertilizantes/análisis , Glycine max/crecimiento & desarrollo , Quelantes del Hierro/química , Hierro/química , Adsorción , Ácido Edético/análogos & derivados , Ácido Edético/química , Etilenodiaminas/química , Hierro/metabolismo , Isomerismo , Suelo/química , Glycine max/metabolismo
17.
Front Plant Sci ; 7: 1767, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28018367

RESUMEN

Zn-Lignosulfonates (LS) fertilizers are used as an eco-friendly alternative to chelate formulations. The mechanisms of Zn release in the rhizosphere by both types of products are compared. The ability to provide Zn to Phaseolus vulgaris L of non-modified and chemically modified ZnLS and ZnEDTA is compared in a hydroponic assay. Stable isotope 67Zn was used to study Zn source (fertilizer, ZnFer, or native, ZnNat) uptake and distribution in plants in two soil pot experiments. ZnEDTA was the best treatment to provide both ZnFer and ZnNat to navy bean plants. A shuttle effect mechanism and an isotopic exchange may occur. ZnLS from eucalyptus (ZnLSE) provides more Zn to the plant than LS from spruce. Chemical modifications of ZnLSE does not improve its efficiency. A double dose of ZnLSE provides similar ZnFer in leaves and similar soluble ZnFer content in soil than ZnEDTA. A model for the Zn fertilizers behavior in the soil and plant system is presented, showing the shuttle effect for the synthetic chelate and the direct delivery in the rhizosphere for the ZnLS complex.

18.
J Sci Food Agric ; 96(4): 1111-20, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25801317

RESUMEN

BACKGROUND: Studies about simultaneous fertilisation with several micronutrients have increased in recent years, as Fe, Mn and Zn deficiencies may appear in the same culture conditions. In fertigation, the replacement of sulfates by synthetic chelates is essential in areas with high pH irrigation water and substrates. Ethylenediamine-N-(2-hydroxyphenylacetic acid)-N'-(4-hydroxyphenylacetic acid) (o,p-EDDHA) and ethylenediamine disuccinic acid (EDDS) are novel chelating agents whose efficacy in simultaneous fertilisation of Zn, Mn and Cu is unknown. This work evaluates the effectiveness of both ligands compared to traditional ligands (EDTA, HEEDTA and DTPA) applied as micronutrient chelate mixtures to soybean and navy bean plants grown in soil-less cultures at high pH by analysing the SPAD and micronutrient nutritional status, including the Composition Nutritional Diagnosis (CND) analysis tool. RESULTS: The application of micronutrients using o,p-EDDHA was more effective in providing Mn and Zn than traditional ligands or sulfates. The application using EDDS increased the Zn nutrition. The results are well correlated with the chemical stability of the formulations. CONCLUSION: The combined application of Mn and Zn as o,p-EDDHA chelates can represent a more effective source than traditional chelates in micronutrient fertiliser mixtures in soil-less cultures at a high pH.


Asunto(s)
Quelantes/química , Fertilizantes/análisis , Metales Pesados/química , Acuicultura , Cobre/química , Humanos , Concentración de Iones de Hidrógeno , Hierro/química , Manganeso/química , Zinc/química
19.
Front Plant Sci ; 6: 752, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26442065

RESUMEN

This study compares the effectiveness of multi-micronutrient formulations containing iron (Fe), manganese (Mn), and zinc (Zn) with traditional (EDTA, DTPA, HEEDTA, and EDDHAm) or novel chelates (o,p-EDDHA, S,S-EDDS, and IDHA) and natural complexing agents (gluconate and lignosulfonate). The stability and reactivity of the formulations were studied on batch experiments with calcareous soil and by speciation modeling. Formulations containing traditional ligands maintained higher Mn but lower Zn concentration in soil solution than the novel ligands. The gluconate and lignosulfonate maintained low concentrations of both Mn and Zn in soil solution. Selected formulations were applied into calcareous soil and their efficacy was evaluated in a pot experiment with soybean. The formulation containing DTPA led to the highest Zn concentration in plants, as well as the formulation containing S,S-EDDS in the short-term, which correlated with its biodegradability. The application of traditional or novel ligands in formulations did not result in sufficient plant Mn concentrations, which was related to the low Mn stability observed for all formulations under moderate oxidation conditions. The results highlight the need to consider the effect of metals and ligands interactions in multi-nutrient fertilization and the potential of S,S-EDDS to be used for Zn fertilization. Furthermore, it is necessary to explore new sources of Mn fertilization for calcareous soils that have greater stability and efficiency, or instead to use foliar fertilization.

20.
Front Plant Sci ; 5: 104, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24723927

RESUMEN

The calcifuge and calcicole character of wild plants has been related to nutrient availability shortages, including iron (Fe)-deficiency. Surprisingly, just a few studies examined the relation between root Fe uptake and plant distribution in different soil types. We assessed the root Fe acquisition efficiency of two Ulmus species with calcareous (Ulmus minor) and siliceous (U. laevis) soil distribution patterns in the Iberian Peninsula. Seedlings of both elm species were grown hydroponically with different Fe concentrations during 6 weeks. Plant physiological responses to Fe-limiting conditions were evaluated as were the ferric reductase activity and proton (H(+)) extrusion capacity of the roots. Iron deprived elm seedlings of both species were stunted and suffered severe Fe-chlorosis symptoms. After Fe re-supply leaf chlorophyll concentrations rose according to species-dependent patterns. While U. minor leaves and seedlings re-greened evenly, U. laevis did so along the nerves of new growing leaves. U. minor had a higher root ferric reductase activity and H(+)-extrusion capability than U. laevis and maintained a better nutrient balance when grown under Fe-limiting conditions. The two elm species were found to have different Fe acquisition efficiencies which may be related to their natural distribution in calcareous and siliceous soils of the Iberian Peninsula.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...