Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Cell Biol ; 21(11): 1370-1381, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31685997

RESUMEN

Cell migration is hypothesized to involve a cycle of behaviours beginning with leading edge extension. However, recent evidence suggests that the leading edge may be dispensable for migration, raising the question of what actually controls cell directionality. Here, we exploit the embryonic migration of Drosophila macrophages to bridge the different temporal scales of the behaviours controlling motility. This approach reveals that edge fluctuations during random motility are not persistent and are weakly correlated with motion. In contrast, flow of the actin network behind the leading edge is highly persistent. Quantification of actin flow structure during migration reveals a stable organization and asymmetry in the cell-wide flowfield that strongly correlates with cell directionality. This organization is regulated by a gradient of actin network compression and destruction, which is controlled by myosin contraction and cofilin-mediated disassembly. It is this stable actin-flow polarity, which integrates rapid fluctuations of the leading edge, that controls inherent cellular persistence.


Asunto(s)
Actinas/genética , Movimiento Celular/genética , Drosophila melanogaster/embriología , Mecanotransducción Celular , Pez Cebra/embriología , Actinas/metabolismo , Animales , Polaridad Celular , Rastreo Celular , Cofilina 1/genética , Cofilina 1/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hemocitos/citología , Hemocitos/metabolismo , Queratinocitos/citología , Queratinocitos/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Miosinas/genética , Miosinas/metabolismo , Cultivo Primario de Células , Pez Cebra/genética , Pez Cebra/metabolismo , Proteína Fluorescente Roja
2.
J Cell Sci ; 132(11)2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31076510

RESUMEN

Interactions between different cell types can induce distinct contact inhibition of locomotion (CIL) responses that are hypothesised to control population-wide behaviours during embryogenesis. However, our understanding of the signals that lead to cell-type specific repulsion and the precise capacity of heterotypic CIL responses to drive emergent behaviours is lacking. Using a new model of heterotypic CIL, we show that fibrosarcoma cells, but not fibroblasts, are actively repelled by epithelial cells in culture. We show that knocking down EphB2 or ERK in fibrosarcoma cells specifically leads to disruption of the repulsion phase of CIL in response to interactions with epithelial cells. We also examine the population-wide effects when these various cell combinations are allowed to interact in culture. Unlike fibroblasts, fibrosarcoma cells completely segregate from epithelial cells and inhibiting their distinct CIL response by knocking down EphB2 or ERK family proteins also disrupts this emergent sorting behaviour. These data suggest that heterotypic CIL responses, in conjunction with processes such as differential adhesion, may aid the sorting of cell populations.


Asunto(s)
Comunicación Celular/fisiología , Inhibición de Contacto/fisiología , Células Epiteliales/fisiología , Fibroblastos/fisiología , Células Madre Mesenquimatosas/fisiología , Células 3T3 , Animales , Línea Celular , Movimiento Celular/fisiología , Separación Celular , Desarrollo Embrionario/fisiología , Quinasas MAP Reguladas por Señal Extracelular/genética , Fibrosarcoma/metabolismo , Humanos , Ratones , Receptor EphB2/genética
3.
Cell ; 161(2): 361-73, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25799385

RESUMEN

Contact inhibition of locomotion (CIL) is a multifaceted process that causes many cell types to repel each other upon collision. During development, this seemingly uncoordinated reaction is a critical driver of cellular dispersion within embryonic tissues. Here, we show that Drosophila hemocytes require a precisely orchestrated CIL response for their developmental dispersal. Hemocyte collision and subsequent repulsion involves a stereotyped sequence of kinematic stages that are modulated by global changes in cytoskeletal dynamics. Tracking actin retrograde flow within hemocytes in vivo reveals synchronous reorganization of colliding actin networks through engagement of an inter-cellular adhesion. This inter-cellular actin-clutch leads to a subsequent build-up in lamellar tension, triggering the development of a transient stress fiber, which orchestrates cellular repulsion. Our findings reveal that the physical coupling of the flowing actin networks during CIL acts as a mechanotransducer, allowing cells to haptically sense each other and coordinate their behaviors.


Asunto(s)
Drosophila melanogaster/citología , Hemocitos/citología , Actinas/metabolismo , Animales , Adhesión Celular , Inhibición de Contacto , Citoesqueleto/metabolismo , Miosinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA