Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep Med ; 4(12): 101339, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38118405

RESUMEN

Rhabdomyosarcoma (RMS) is the main form of pediatric soft-tissue sarcoma. Its cure rate has not notably improved in the last 20 years following relapse, and the lack of reliable preclinical models has hampered the design of new therapies. This is particularly true for highly heterogeneous fusion-negative RMS (FNRMS). Although methods have been proposed to establish FNRMS organoids, their efficiency remains limited to date, both in terms of derivation rate and ability to accurately mimic the original tumor. Here, we present the development of a next-generation 3D organoid model derived from relapsed adult and pediatric FNRMS. This model preserves the molecular features of the patients' tumors and is expandable for several months in 3D, reinforcing its interest to drug combination screening with longitudinal efficacy monitoring. As a proof-of-concept, we demonstrate its preclinical relevance by reevaluating the therapeutic opportunities of targeting apoptosis in FNRMS from a streamlined approach based on transcriptomic data exploitation.


Asunto(s)
Antineoplásicos , Rabdomiosarcoma , Adulto , Humanos , Niño , Recurrencia Local de Neoplasia/tratamiento farmacológico , Rabdomiosarcoma/tratamiento farmacológico , Rabdomiosarcoma/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Organoides/patología , Muerte Celular
2.
Nat Biotechnol ; 41(11): 1567-1581, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36823355

RESUMEN

The lack of registered drugs for nonalcoholic fatty liver disease (NAFLD) is partly due to the paucity of human-relevant models for target discovery and compound screening. Here we use human fetal hepatocyte organoids to model the first stage of NAFLD, steatosis, representing three different triggers: free fatty acid loading, interindividual genetic variability (PNPLA3 I148M) and monogenic lipid disorders (APOB and MTTP mutations). Screening of drug candidates revealed compounds effective at resolving steatosis. Mechanistic evaluation of effective drugs uncovered repression of de novo lipogenesis as the convergent molecular pathway. We present FatTracer, a CRISPR screening platform to identify steatosis modulators and putative targets using APOB-/- and MTTP-/- organoids. From a screen targeting 35 genes implicated in lipid metabolism and/or NAFLD risk, FADS2 (fatty acid desaturase 2) emerged as an important determinant of hepatic steatosis. Enhancement of FADS2 expression increases polyunsaturated fatty acid abundancy which, in turn, reduces de novo lipogenesis. These organoid models facilitate study of steatosis etiology and drug targets.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Evaluación Preclínica de Medicamentos , Hepatocitos/metabolismo , Metabolismo de los Lípidos , Apolipoproteínas B/metabolismo , Hígado/metabolismo
3.
J Vis Exp ; (169)2021 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-33843937

RESUMEN

In vitro three-dimensional (3D) cell culture models, such as organoids and spheroids, are valuable tools for many applications including development and disease modeling, drug discovery, and regenerative medicine. To fully exploit these models, it is crucial to study them at cellular and subcellular levels. However, characterizing such in vitro 3D cell culture models can be technically challenging and requires specific expertise to perform effective analyses. Here, this paper provides detailed, robust, and complementary protocols to perform staining and subcellular resolution imaging of fixed in vitro 3D cell culture models ranging from 100 µm to several millimeters. These protocols are applicable to a wide variety of organoids and spheroids that differ in their cell-of-origin, morphology, and culture conditions. From 3D structure harvesting to image analysis, these protocols can be completed within 4-5 days. Briefly, 3D structures are collected, fixed, and can then be processed either through paraffin-embedding and histological/immunohistochemical staining, or directly immunolabeled and prepared for optical clearing and 3D reconstruction (200 µm depth) by confocal microscopy.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Imagenología Tridimensional/métodos , Organoides/diagnóstico por imagen , Esferoides Celulares/patología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...