Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Org Lett ; 26(31): 6787-6791, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39073347

RESUMEN

The widely used Fmoc/t-Bu solid-phase peptide synthesis (SPPS) is hampered by relying on corrosive, per/polyfluoroalkyl substance (PFAS) classified trifluoroacetic acid (TFA) as a universal protecting group (PG) removal/resin cleavage reagent. We report that suitable combinations of Brønsted acids (BAs) and Lewis acids (LAs) such as HCl/FeCl3 and AcOH/FeCl3 constitute viable alternatives for TFA as PFAS-free cleavage agents. Using water miscible dimethyl carbonate (DMC) and acetonitrile (MeCN) as solvents enabled diluting cleavage mixtures with suitable aqueous solutions, allowing for direct use in purification in which removal of >99.99% iron from an HCl/FeCl3 induced cleavage was demonstrated.

2.
J Org Chem ; 89(7): 4261-4282, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38508870

RESUMEN

Small molecule therapeutics represent the majority of the FDA-approved drugs. Yet, many attractive targets are poorly tractable by small molecules, generating a need for new therapeutic modalities. Due to their biocompatibility profile and structural versatility, peptide-based therapeutics are a possible solution. Additionally, in the past two decades, advances in peptide design, delivery, formulation, and devices have occurred, making therapeutic peptides an attractive modality. However, peptide manufacturing is often limited to solid-phase peptide synthesis (SPPS), liquid phase peptide synthesis (LPPS), and to a lesser extent hybrid SPPS/LPPS, with SPPS emerging as a predominant platform technology for peptide synthesis. SPPS involves the use of excess solvents and reagents which negatively impact the environment, thus highlighting the need for newer technologies to reduce the environmental footprint. Herein, fourteen American Chemical Society Green Chemistry Institute Pharmaceutical Roundtable (ACS GCIPR) member companies with peptide-based therapeutics in their portfolio have compiled Process Mass Intensity (PMI) metrics to help inform the sustainability efforts in peptide synthesis. This includes PMI assessment on 40 synthetic peptide processes at various development stages in pharma, classified according to the development phase. This is the most comprehensive assessment of synthetic peptide environmental metrics to date. The synthetic peptide manufacturing process was divided into stages (synthesis, purification, isolation) to determine their respective PMI. On average, solid-phase peptide synthesis (SPPS) (PMI ≈ 13,000) does not compare favorably with other modalities such as small molecules (PMI median 168-308) and biopharmaceuticals (PMI ≈ 8300). Thus, the high PMI for peptide synthesis warrants more environmentally friendly processes in peptide manufacturing.


Asunto(s)
Péptidos , Técnicas de Síntesis en Fase Sólida , Péptidos/química , Técnicas de Química Sintética , Solventes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA