Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
2.
Polymers (Basel) ; 15(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37242899

RESUMEN

Articular cartilage is a specialized tissue that provides a smooth surface for joint movement and load transmission. Unfortunately, it has limited regenerative capacity. Tissue engineering, combining different cell types, scaffolds, growth factors, and physical stimulation has become an alternative for repairing and regenerating articular cartilage. Dental Follicle Mesenchymal Stem Cells (DFMSCs) are attractive candidates for cartilage tissue engineering because of their ability to differentiate into chondrocytes, on the other hand, the polymers blend like Polycaprolactone (PCL) and Poly Lactic-co-Glycolic Acid (PLGA) have shown promise given their mechanical properties and biocompatibility. In this work, the physicochemical properties of polymer blends were evaluated by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM) and were positive for both techniques. The DFMSCs demonstrated stemness by flow cytometry. The scaffold showed to be a non-toxic effect when we evaluated it with Alamar blue, and the samples were analyzed using SEM and phalloidin staining to evaluate cell adhesion to the scaffold. The synthesis of glycosaminoglycans was positive on the construct in vitro. Finally, the PCL/PLGA scaffold showed a better repair capacity than two commercial compounds, when tested in a chondral defect rat model. These results suggest that the PCL/PLGA (80:20) scaffold may be suitable for applications in the tissue engineering of articular hyaline cartilage.

3.
Microbiol Spectr ; 11(3): e0063023, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37227282

RESUMEN

The Zika virus (ZIKV) is teratogenic and considered a TORCH pathogen (toxoplasmosis [Toxoplasma gondii], rubella, cytomegalovirus, herpes simplex virus [HSV], and other microorganisms capable of crossing the blood-placenta barrier). In contrast, the related flavivirus dengue virus (DENV) and the attenuated yellow fever virus vaccine strain (YFV-17D) are not. Understanding the mechanisms used by ZIKV to cross the placenta is necessary. In this work, parallel infections with ZIKV of African and Asian lineages, DENV, and YFV-17D were compared for kinetics and growth efficiency, activation of mTOR pathways, and cytokine secretion profile using cytotrophoblast-derived HTR8 cells and monocytic U937 cells differentiated to M2 macrophages. In HTR8 cells, ZIKV replication, especially the African strain, was significantly more efficient and faster than DENV or YFV-17D. In macrophages, ZIKV replication was also more efficient, although differences between strains were reduced. Greater activation of the mTORC1 and mTORC2 pathways in HTR8 cells infected with ZIKV than with DENV or YFV-17D was observed. HTR8 cells treated with mTOR inhibitors showed a 20-fold reduction in ZIKV yield, versus 5- and 3.5-fold reductions for DENV and YFV-17D, respectively. Finally, infection with ZIKV, but not DENV or YFV-17D, efficiently inhibited the interferon (IFN) and chemoattractant responses in both cell lines. These results suggest a gating role for the cytotrophoblast cells in favoring entry of ZIKV, but not DENV and YFV-17D, into the placental stroma. IMPORTANCE Zika virus acquisition during pregnancy is associated with severe fetal damage. The Zika virus is related to dengue virus and yellow fever virus, yet fetal damage has not been related to dengue or inadvertent vaccination for yellow fever during pregnancy. Mechanisms used by the Zika virus to cross the placenta need to be deciphered. By comparing parallel infections of Zika virus strains belonging to the African and Asian lineages, dengue virus, and the yellow fever vaccine virus strain YFV-17D in placenta-derived cytotrophoblast cells and differentiated macrophages, evidence was found that Zika virus infections, especially by the African strains, were more efficient in cytotrophoblast cells than dengue virus or yellow fever vaccine virus strain infections. Meanwhile, no significant differences were observed in macrophages. Robust activation of the mTOR signaling pathways and inhibition of the IFN and chemoattractant response appear to be related to the better growth capacity of the Zika viruses in the cytotrophoblast-derived cells.


Asunto(s)
Virus del Dengue , Dengue , Flavivirus , Vacuna contra la Fiebre Amarilla , Fiebre Amarilla , Infección por el Virus Zika , Virus Zika , Humanos , Femenino , Embarazo , Fiebre Amarilla/prevención & control , Trofoblastos , Placenta , Virus de la Fiebre Amarilla , Serina-Treonina Quinasas TOR
4.
Virol J ; 20(1): 43, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36879270

RESUMEN

Zika virus (ZIKV) infection is a major public health threat, making the study of its biology a matter of great importance. By analyzing the viral-host protein interactions, new drug targets may be proposed. In this work, we showed that human cytoplasmic dynein-1 (Dyn) interacts with the envelope protein (E) of ZIKV. Biochemical evidence indicates that the E protein and the dimerization domain of the heavy chain of Dyn binds directly without dynactin or any cargo adaptor. Analysis of this interactions in infected Vero cells by proximity ligation assay suggest that the E-Dyn interaction is dynamic and finely tuned along the replication cycle. Altogether, our results suggest new steps in the replication cycle of the ZIKV for virion transport and indicate a suitable molecular target to modulate infection by ZIKV.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Chlorocebus aethiops , Humanos , Animales , Dineínas Citoplasmáticas , Células Vero , Transporte Biológico
5.
J Virol ; 96(12): e0070422, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35652656

RESUMEN

Dengue virus (DENV) NS1 is a multifunctional protein essential for viral replication. To gain insights into NS1 functions in mosquito cells, the protein interactome of DENV NS1 in C6/36 cells was investigated using a proximity biotinylation system and mass spectrometry. A total of 817 mosquito targets were identified as protein-protein interacting with DENV NS1. Approximately 14% of them coincide with interactomes previously obtained in vertebrate cells, including the oligosaccharide transferase complex, the chaperonin containing TCP-1, vesicle localization, and ribosomal proteins. Notably, other protein pathways not previously reported in vertebrate cells, such as epigenetic regulation and RNA silencing, were also found in the NS1 interactome in mosquito cells. Due to the novel and strong interactions observed for NS1 and the epigenetic regulator DIDO1 (Death-Inducer Obliterator 1), the role of DIDO1 in viral replication was further explored. Interactions between NS1 and DIDO1 were corroborated in infected mosquito cells, by colocalization and proximity ligation assays. Silencing DIDO1 expression results in a significant reduction in DENV and ZIKV replication and progeny production. Comparison of transcription analysis of mock or DENV infected cells silenced for DIDO1 revealed variations in multiple gene expression pathways, including pathways associated with DENV infection such as RNA surveillance, IMD, and Toll. These results suggest that DIDO1 is a host factor involved in the negative modulation of the antiviral response necessary for flavivirus replication in mosquito cells. Our findings uncover novel mechanisms of NS1 to promote DENV and ZIKV replication, and add to the understanding of NS1 as a multifunctional protein. IMPORTANCE Dengue is the most important mosquito-borne viral disease to humans. Dengue virus NS1 is a multifunctional protein essential for replication and modulation of innate immunity. To gain insights into NS1 functions, the protein interactome of dengue virus NS1 in Aedes albopictus cells was investigated using a proximity biotinylation system and mass spectrometry. Several protein pathways, not previously observed in vertebrate cells, such as transcription and epigenetic regulation, were found as part of the NS1 interactome in mosquito cells. Among those, DIDO1 was found to be a necessary host factor for dengue and Zika virus replication in mosquito cells. Transcription analysis of infected mosquito cells silenced for DIDO1 revealed alterations of the IMD and Toll pathways, part of the antiviral response in mosquitoes. The results suggest that DIDO1 is a host factor involved in modulation of the antiviral response and necessary for flavivirus replication.


Asunto(s)
Aedes , Proteínas de Unión al ADN , Virus del Dengue , Proteínas no Estructurales Virales , Replicación Viral , Virus Zika , Animales , Antivirales/metabolismo , Proteínas de Unión al ADN/metabolismo , Dengue , Virus del Dengue/genética , Virus del Dengue/fisiología , Epigénesis Genética , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Virus Zika/genética , Virus Zika/fisiología , Infección por el Virus Zika/genética
6.
Virology ; 570: 67-80, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35390695

RESUMEN

Septins are a family of GTP-binding proteins identified in insects and mammals. Septins are components of the cytoskeleton and participate in cytokinesis, chromosomal segregation, intracellular vesicular traffic, and response to pathogens. Human septin 6 was identified as necessary for hepatitis C virus replication. Information about host factors necessary for flavivirus replication in mosquitoes is scarce. Thus, the role of septins in the replicative cycle of dengue virus in Aedes spp. derived cells was investigated. Through bioinformatic analysis, sequences of septin-like proteins were identified. Infected mosquito cells showed increased expression of Sep2. Colocalization analysis, proximity ligation and immunoprecipitation assays indicated that Sep2 interacts with proteins E, NS3 and NS5, but not NS1. Immunoelectron microscopy evidenced the presence of AalSep2 in replicative complexes. Finally, silencing of Sep2 expression resulted in a significant decrease in virus progeny, indicating that Sep2 is a host factor participating in dengue virus replication in mosquito cells.


Asunto(s)
Aedes , Dengue , Flavivirus , Replicación Viral , Aedes/virología , Animales , Dengue/virología , Flavivirus/metabolismo , Flavivirus/fisiología , Humanos , Mamíferos , Septinas/genética , Septinas/metabolismo
7.
J Virol ; 96(5): e0166421, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-34986002

RESUMEN

The dengue virus NS1 is a multifunctional protein that forms part of replication complexes. NS1 is also secreted, as a hexamer, to the extracellular milieu. Circulating NS1 has been associated with dengue pathogenesis by several mechanisms. Cell binding and internalization of soluble NS1 result in endothelial hyperpermeability and in the downregulation of the innate immune response. In this work, we report that the HDL scavenger receptor B1 (SRB1) in human hepatic cells and a scavenger receptor B1-like in mosquito C6/36 cells act as cell surface binding receptors for dengue virus NS1. The presence of the SRB1 on the plasma membrane of C6/36 cells, as well as in Huh7 cells, was demonstrated by confocal microscopy. The internalization of NS1 can be efficiently blocked by anti-SRB1 antibodies, and previous incubation of the cells with HDL significantly reduces NS1 internalization. Significant reduction in NS1 internalization was observed in C6/36 cells transfected with siRNAs specific for SRB1. In addition, the transient expression of SRB1 in Vero cells, which lacks the receptor, allows NS1 internalization in these cells. Direct interaction between soluble NS1 and the SRB1 in Huh7 and C6/36 cells was demonstrated in situ by proximity ligation assays and in vitro by surface plasmon resonance. Finally, results are presented indicating that the SRB1 also acts as a cell receptor for Zika virus NS1. These results demonstrate that dengue virus NS1, a bona fide lipoprotein, usurps the HDL receptor for cell entry and offers explanations for the altered serum lipoprotein homeostasis observed in dengue patients. IMPORTANCE Dengue is the most common viral disease transmitted to humans by mosquitoes. The dengue virus NS1 is a multifunctional glycoprotein necessary for viral replication. NS1 is also secreted as a hexameric lipoprotein and circulates in high concentrations in the sera of patients. Circulating NS1 has been associated with dengue pathogenesis by several mechanisms, including favoring of virus replication in hepatocytes and dendritic cells and disruption of the endothelial glycocalyx leading to hyperpermeability. Those last actions require NS1 internalization. Here, we identify the scavenger cell receptor B1, as the cell-binding receptor for dengue and Zika virus NS1, in cultured liver and in mosquito cells. The results indicate that flavivirus NS1, a bona fide lipoprotein, usurps the human HDL receptor and may offer explanations for the alterations in serum lipoprotein homeostasis observed in dengue patients.


Asunto(s)
Virus del Dengue , Receptores Depuradores , Proteínas no Estructurales Virales , Infección por el Virus Zika , Virus Zika , Animales , Línea Celular , Chlorocebus aethiops , Culicidae/virología , Dengue/virología , Virus del Dengue/metabolismo , Humanos , Lipoproteínas HDL , Receptores de Lipoproteína , Receptores Depuradores/metabolismo , Células Vero , Proteínas no Estructurales Virales/inmunología , Internalización del Virus , Virus Zika/metabolismo
8.
Sci Rep ; 11(1): 23489, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34873243

RESUMEN

The stress of the Golgi apparatus is an autoregulatory mechanism that is induced to compensate for greater demand in the Golgi functions. No examples of Golgi stress responses due to physiological stimuli are known. Furthermore, the impact on this organelle of viral infections that occupy the vesicular transport during replication is unknown. In this work, we evaluated if a Golgi stress response is triggered during dengue and Zika viruses replication, two flaviviruses whose replicative cycle is heavily involved with the Golgi complex, in vertebrate and mosquito cells. Using GM-130 as a Golgi marker, and treatment with monensin as a positive control for the induction of the Golgi stress response, a significant expansion of the Golgi cisternae was observed in BHK-21, Vero E6 and mosquito cells infected with either virus. Activation of the TFE3 pathway was observed in the infected cells as indicated by the translocation from the cytoplasm to the nucleus of TFE3 and increased expression of pathway targeted genes. Of note, no sign of activation of the stress response was observed in CRFK cells infected with Feline Calicivirus (FCV), a virus released by cell lysis, not requiring vesicular transport. Finally, dilatation of the Golgi complex and translocation of TFE3 was observed in vertebrate cells expressing dengue and Zika viruses NS1, but not NS3. These results indicated that infections by dengue and Zika viruses induce a Golgi stress response in vertebrate and mosquito cells due to the increased demand on the Golgi complex imposed by virion and NS1 processing and secretion.


Asunto(s)
Culicidae/virología , Infecciones por Flavivirus/virología , Flavivirus/genética , Aparato de Golgi/virología , Vertebrados/virología , Animales , Células Cultivadas , Chlorocebus aethiops , Mesocricetus , Células Vero , Proteínas no Estructurales Virales/genética , Replicación Viral/genética
9.
PLoS Negl Trop Dis ; 14(6): e0008203, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32579555

RESUMEN

BACKGROUND: Dengue virus (DENV) infections pose one of the largest global barriers to human health. The four serotypes (DENV 1-4) present different symptoms and influence immune response to subsequent DENV infections, rendering surveillance, risk assessments, and disease control particularly challenging. Early diagnosis and appropriate clinical management is critical and can be achieved by detecting DENV nonstructural protein 1 (NS1) in serum during the acute phase. However, few NS1-based tests have been developed that are capable of differentiating DENV serotypes and none are currently commercially available. METHODOLOGY/PRINCIPLE FINDINGS: We developed an enzyme-linked immunosorbent assay (ELISA) to distinguish DENV-1-4 NS1 using serotype-specific pairs of monoclonal antibodies. A total of 1,046 antibodies were harvested from DENV-immunized mice and screened for antigen binding affinity. ELISA clinical performance was evaluated using 408 polymerase chain reaction-confirmed dengue samples obtained from patients in Brazil, Honduras, and India. The overall sensitivity of the test for pan-DENV was 79.66% (325/408), and the sensitivities for DENV-1-4 serotyping were 79.1% (38/48), 80.41% (78/97), 100% (45/45), and 79.6% (98/123), respectively. Specificity reached 94.07-100%. SIGNIFICANCE: Our study demonstrates a robust antibody screening strategy that enabled the development of a serotype NS1-based ELISA with maximized specific and sensitive antigen binding. This sensitive and specific assay also utilized the most expansive cohort to date, and of which about half are from Latin America, a geographic region severely underrepresented in previous similar studies. This ELISA test offers potential enhanced diagnostics during the acute phase of infection to help guide patient care and disease control. These results indicate that this ELISA is a promising aid in early DENV-1-4 diagnosis and surveillance in regions of endemicity in addition to offer convenient monitoring for future vaccine interventions.


Asunto(s)
Virus del Dengue/clasificación , Virus del Dengue/aislamiento & purificación , Dengue/virología , Ensayo de Inmunoadsorción Enzimática/métodos , Serogrupo , Proteínas no Estructurales Virales/análisis , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/aislamiento & purificación , Brasil , Estudios de Cohortes , Honduras , Humanos , India , América Latina , Ratones Endogámicos C57BL , Sensibilidad y Especificidad
10.
Front Immunol ; 10: 1651, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31379848

RESUMEN

Dengue and Zika viruses are closely related mosquito-borne flaviviruses responsible for major public health problems in tropical and sub-tropical countries. The genomes of both, dengue and zika viruses encodes 10 genes that are translated into three structural proteins (C, prM, and E) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). The non-structural protein 1 (NS1) is a highly conserved glycoprotein of approximately 48-50 KDa. In infected cells, NS1 is found as a homodimer associated with intracellular membranes and replication complexes, serving as a scaffolding protein in virus replication and morphogenesis. NS1 is secreted efficiently from infected cells as a hexamer and is found in patient's sera during the acute phase of the disease. NS1 detection in sera is a valuable diagnostic marker and immunization with NS1 has been shown to protect animal models from lethal challenges with dengue and Zika viruses. Nevertheless, soluble NS1 has been associated with severe dengue and anti-NS1 antibodies have been reported to cross-react with host platelets and endothelial cells and thus presumably contribute to pathogenesis. Due to the implications of NS1 in arbovirus pathogenesis and its relevance as vaccine candidate, we discuss the dual role that anti-NS1 antibodies may play in protection and disease and the challenges that need to be overcome to develop safe and effective NS1-based vaccines against dengue and Zika.


Asunto(s)
Anticuerpos Antivirales/inmunología , Virus del Dengue/inmunología , Proteínas no Estructurales Virales/inmunología , Virus Zika/inmunología , Animales , Dengue/inmunología , Vacunas contra el Dengue/inmunología , Humanos , Vacunas Virales/inmunología
11.
J Virol ; 93(4)2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30463973

RESUMEN

Dengue virus (DENV) is a mosquito-borne virus of the family Flaviviridae The RNA viral genome encodes three structural and seven nonstructural proteins. Nonstructural protein 1 (NS1) is a multifunctional protein actively secreted in vertebrate and mosquito cells during infection. In mosquito cells, NS1 is secreted in a caveolin-1-dependent manner by an unconventional route. The caveolin chaperone complex (CCC) is a cytoplasmic complex formed by caveolin-1 and the chaperones FKBP52, Cy40, and CyA and is responsible for the cholesterol traffic inside the cell. In this work, we demonstrate that in mosquito cells, but not in vertebrate cells, NS1 associates with and relies on the CCC for secretion. Treatment of mosquito cells with classic secretion inhibitors, such as brefeldin A, Golgicide A, and Fli-06, showed no effect on NS1 secretion but significant reductions in recombinant luciferase secretion and virion release. Silencing the expression of CAV-1 or FKBP52 with short interfering RNAs or the inhibition of CyA by cyclosporine resulted in significant decrease in NS1 secretion, again without affecting virion release. Colocalization, coimmunoprecipitation, and proximity ligation assays indicated that NS1 colocalizes and interacts with all proteins of the CCC. In addition, CAV-1 and FKBP52 expression was found augmented in DENV-infected cells. Results obtained with Zika virus-infected cells suggest that in mosquito cells, ZIKV NS1 follows the same secretory pathway as that observed for DENV NS1. These results uncover important differences in the dengue virus-cell interactions between the vertebrate host and the mosquito vector as well as novel functions for the chaperone caveolin complex.IMPORTANCE The dengue virus protein NS1 is secreted efficiently from both infected vertebrate and mosquito cells. Previously, our group reported that NS1 secretion in mosquito cells follows an unconventional secretion pathway dependent on caveolin-1. In this work, we demonstrate that in mosquito cells, but not in vertebrate cells, NS1 secretion takes place in association with the chaperone caveolin complex, a complex formed by caveolin-1 and the chaperones FKBP52, CyA, and Cy40, which are in charge of cholesterol transport inside the cell. Results obtained with ZIKV-infected mosquito cells suggest that ZIKV NS1 is released following an unconventional secretory route in association with the chaperone caveolin complex. These results uncover important differences in the virus-cell interactions between the vertebrate host and the mosquito vector, as well as novel functions for the chaperone caveolin complex. Moreover, manipulation of the NS1 secretory route may prove a valuable strategy to combat these two mosquito-borne diseases.


Asunto(s)
Caveolina 1/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas no Estructurales Virales/metabolismo , Animales , Transporte Biológico , Caveolinas/metabolismo , Línea Celular , Chlorocebus aethiops , Culicidae/metabolismo , Culicidae/virología , Dengue/virología , Virus del Dengue/genética , Virus del Dengue/metabolismo , Virus del Dengue/fisiología , Humanos , Mosquitos Vectores , Unión Proteica , Proteínas de Unión a Tacrolimus/metabolismo , Células Vero , Proteínas no Estructurales Virales/genética , Virus Zika/metabolismo , Infección por el Virus Zika/virología
12.
J Virol ; 92(14)2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29720514

RESUMEN

Dengue virus nonstructural protein 1 (NS1) is a multifunctional glycoprotein. For decades, the notion in the field was that NS1 is secreted exclusively from vertebrate cells and not from mosquito cells. However, recent evidence shows that mosquito cells also secrete NS1 efficiently. In this review, we discuss the evidence for secretion of NS1 of dengue virus, and of other flaviviruses, from mosquito cells, differences between NS1 secreted from mosquito and NS1 secreted from vertebrate cells, and possible roles of soluble NS1 in the insect flavivirus vector.


Asunto(s)
Culicidae/virología , Virus del Dengue/fisiología , Dengue/virología , Mosquitos Vectores , Proteínas no Estructurales Virales/metabolismo , Animales , Humanos
13.
Gut Pathog ; 10: 6, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29483944

RESUMEN

BACKGROUND: The role of rotavirus as main etiologic agent of diarrhea has been well documented worldwide, including in Venezuela. However, information about the prevalence of gastrointestinal viruses such as calicivirus, adenovirus and astrovirus is limited and the contribution of other agents as Aichi virus and klassevirus is largely unknown. To explore the etiological spectrum of diarrhea associated with agents other than rotaviruses, 227 stool samples from children under 5 years old with acute gastroenteritis, collected in Valencia (Venezuela) from 2001 to 2005, and previously tested as rotavirus-negative, were analyzed for caliciviruses, adenoviruses, astroviruses, Aichi viruses, klasseviruses, picobirnaviruses and enteroviruses by specific RT-PCRs. RESULTS: At least one viral agent was detected in 134 (59%) of the samples analyzed, mainly from children under 24 months of age and most of them belonging to the lowest socioeconomic status. Overall, enterovirus was identified as the most common viral agent (37.9%), followed by calicivirus (23.3%), adenovirus (11.5%), astrovirus (3.5%), klassevirus (1.3%) and Aichi virus (0.4%), while no picobirnavirus was detected. Klasseviruses were found during 2004 and 2005 and Aichi viruses only in 2005, indicating their circulation in Venezuela; meanwhile, the rest of the viruses were detected during the whole study period. Coinfections with two or more viruses were found in 39 (29.1%) of the infected children, most under 24 months of age. Adenovirus was involved as the coinfecting agent in at least 46.9% of the cases, but no differences concerning socio-demographic variables were observed between the coinfected and the single infected children. CONCLUSIONS: The results show that various enteric viruses, including enteroviruses, caliciviruses and adenoviruses, accounted for a significant proportion of infantile diarrhea cases in Venezuela before rotavirus vaccine implementation. In addition, emerging viruses as Aichi virus and klassevirus were found, indicating the need to continue monitoring their spreading into the communities. Efforts are needed to develop more accurate methods to identify the major causes of diarrhea and to provide tools for more effective preventive measures.

14.
Virus Res ; 245: 17-28, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29269104

RESUMEN

The role of Ca2+ during dengue virus (DENV) replication is unknown; thus, changes in Ca2+ homeostasis in DENV infected human hepatic HepG2 and Huh-7 cells were analyzed. Infected HepG2 cells, but not Huh-7 cells, showed a significant increase in plasma membrane permeability to Ca2+, while both cell lines showed marked reduced levels of Ca2+ stored in the endoplasmic reticulum. While the expression levels of STIM1 and ORAI1 showed no changes, STIM1 and ORAI1 were shown to co-localized in infected cells, indicating activation of the store-operated Ca2+ entry (SOCE) pathway. Finally, manipulation in the infected cells of the intra and extracellular Ca2+ levels by chelators (BAPTA-AM and EGTA), SOC inhibitor (SKF96365), IP3 Receptor antagonist (2APB) or increase of extracellular [Ca2+], significantly reduced DENV yield, but not vesicular stomatitis virus yield, used as a control. These results show that DENV infection alters cell Ca2+ homeostasis and that such changes favor viral replication.


Asunto(s)
Quelantes del Calcio/farmacología , Calcio/metabolismo , Virus del Dengue/efectos de los fármacos , Homeostasis/efectos de los fármacos , Interacciones Huésped-Patógeno , Replicación Viral/efectos de los fármacos , Animales , Compuestos de Boro/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Membrana Celular/virología , Permeabilidad de la Membrana Celular , Chlorocebus aethiops , Virus del Dengue/fisiología , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Retículo Endoplásmico/virología , Expresión Génica , Células Hep G2 , Humanos , Imidazoles/farmacología , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inhibidores , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Transporte Iónico , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/antagonistas & inhibidores , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/antagonistas & inhibidores , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo , Células Vero , Virus de la Estomatitis Vesicular Indiana/efectos de los fármacos , Virus de la Estomatitis Vesicular Indiana/fisiología , Replicación Viral/genética
15.
Sci Transl Med ; 9(409)2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28954927

RESUMEN

The recent Zika virus (ZIKV) outbreak demonstrates that cost-effective clinical diagnostics are urgently needed to detect and distinguish viral infections to improve patient care. Unlike dengue virus (DENV), ZIKV infections during pregnancy correlate with severe birth defects, including microcephaly and neurological disorders. Because ZIKV and DENV are related flaviviruses, their homologous proteins and nucleic acids can cause cross-reactions and false-positive results in molecular, antigenic, and serologic diagnostics. We report the characterization of monoclonal antibody pairs that have been translated into rapid immunochromatography tests to specifically detect the viral nonstructural 1 (NS1) protein antigen and distinguish the four DENV serotypes (DENV1-4) and ZIKV without cross-reaction. To complement visual test analysis and remove user subjectivity in reading test results, we used image processing and data analysis for data capture and test result quantification. Using a 30-µl serum sample, the sensitivity and specificity values of the DENV1-4 tests and the pan-DENV test, which detects all four dengue serotypes, ranged from 0.76 to 1.00. Sensitivity/specificity for the ZIKV rapid test was 0.81/0.86, respectively, using a 150-µl serum input. Serum ZIKV NS1 protein concentrations were about 10-fold lower than corresponding DENV NS1 concentrations in infected patients; moreover, ZIKV NS1 protein was not detected in polymerase chain reaction-positive patient urine samples. Our rapid immunochromatography approach and reagents have immediate application in differential clinical diagnosis of acute ZIKV and DENV cases, and the platform can be applied toward developing rapid antigen diagnostics for emerging viruses.


Asunto(s)
Antígenos Virales/sangre , Virus del Dengue/inmunología , Serogrupo , Virus Zika/inmunología , Secuencia de Aminoácidos , Anticuerpos Monoclonales/inmunología , Antígenos Virales/aislamiento & purificación , Cromatografía de Afinidad , Mapeo Epitopo , Humanos , Curva ROC , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Alineación de Secuencia
16.
J Gen Virol ; 98(8): 2088-2099, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28758625

RESUMEN

Dengue virus NS1 is a glycoprotein of 46-50 kDa that is conserved among flaviviruses, associates as a dimer to cell membranes and is secreted as a hexamer to the extracellular milieu. Recent evidence showed that NS1 is secreted efficiently from infected mosquito cells. To explore the secretory route of NS1 in mosquito cells, infected cells were treated with brefeldin A (BFA) and methyl-beta-cyclodextrin (MßCD). The results showed that MßCD, but not BFA, significantly reduced the release of NS1. Moreover, silencing the expression of caveolin-1 (CAV1; a key component of the caveolar system that transports cholesterol inside the cell), but not SAR1 (a GTPase that participates in the classical secretory pathway), also results in a significant reduction of the secretion of NS1. These results indicate that NS1 is released from mosquito cells via an unconventional secretory route that bypasses the Golgi complex, with the participation of CAV1. In agreement with this notion, differences were observed in the glycosylation status between secreted NS1 and E proteins. Classical mechanics and docking simulations suggested highly favoured interactions between the caveolin-binding domain present in NS1 and the scaffolding domain of CAV1. Finally, proximity ligation assays showed direct interaction between NS1 and CAV1 in infected mosquito cells. These findings are in line with the lipoprotein nature of secreted NS1 and provide new insights into the biology of NS1.


Asunto(s)
Aedes/metabolismo , Aedes/virología , Caveolina 1/metabolismo , Virus del Dengue/metabolismo , Proteínas de Insectos/metabolismo , Proteínas no Estructurales Virales/metabolismo , Animales , Línea Celular , Virus del Dengue/genética , Unión Proteica , Vías Secretoras , Proteínas no Estructurales Virales/genética
17.
Mem Inst Oswaldo Cruz ; 111(3): 161-7, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27008374

RESUMEN

Severe dengue pathogenesis is not fully understood, but high levels of proinflammatory cytokines have been associated with dengue disease severity. In this study, the cytokine levels in 171 sera from Mexican patients with primary dengue fever (DF) and dengue haemorrhagic fever (DHF) from dengue virus (DENV) 1 (n = 116) or 2 (n = 55) were compared. DF and DHF were defined according to the patient's clinical condition, the primary infections as indicated by IgG enzymatic immunoassay negative results, and the infecting serotype as assessed by real-time reverse transcription-polymerase chain reaction. Samples were analysed for circulating levels of interleukin (IL)-12p70, interferon (IFN)-γ, tumour necrosis factor (TNF)-α, IL-6, and IL-8 using a commercial cytometric bead array. Significantly higher IFN-γ levels were found in patients with DHF than those with DF. However, significantly higher IL-12p70, TNF-α, and IL-6 levels were associated with DHF only in patients who were infected with DENV2 but not with DENV1. Moreover, patients with DF who were infected with DENV1 showed higher levels of IL-12p70, TNF-α, and IL-6 than patients with DHF early after-fever onset. The IL-8 levels were similar in all cases regardless of the clinical condition or infection serotype. These results suggest that the association between high proinflammatory cytokine levels and dengue disease severity does not always stand, and it once again highlights the complex nature of DHF pathogenesis.


Asunto(s)
Citocinas/metabolismo , Virus del Dengue/inmunología , Dengue Grave/inmunología , Dengue/inmunología , Virus del Dengue/clasificación , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Mediadores de Inflamación/metabolismo , Interferón gamma/sangre , Interleucina-12/sangre , Interleucina-6/sangre , Interleucina-8/sangre , Masculino , México , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Serogrupo , Dengue Grave/sangre , Estadísticas no Paramétricas , Factor de Necrosis Tumoral alfa/sangre
18.
Mem. Inst. Oswaldo Cruz ; 111(3): 161-167, Mar. 2016. tab, graf
Artículo en Inglés | LILACS | ID: lil-777371

RESUMEN

Severe dengue pathogenesis is not fully understood, but high levels of proinflammatory cytokines have been associated with dengue disease severity. In this study, the cytokine levels in 171 sera from Mexican patients with primary dengue fever (DF) and dengue haemorrhagic fever (DHF) from dengue virus (DENV) 1 (n = 116) or 2 (n = 55) were compared. DF and DHF were defined according to the patient’s clinical condition, the primary infections as indicated by IgG enzymatic immunoassay negative results, and the infecting serotype as assessed by real-time reverse transcription-polymerase chain reaction. Samples were analysed for circulating levels of interleukin (IL)-12p70, interferon (IFN)-γ, tumour necrosis factor (TNF)-α, IL-6, and IL-8 using a commercial cytometric bead array. Significantly higher IFN-γ levels were found in patients with DHF than those with DF. However, significantly higher IL-12p70, TNF-α, and IL-6 levels were associated with DHF only in patients who were infected with DENV2 but not with DENV1. Moreover, patients with DF who were infected with DENV1 showed higher levels of IL-12p70, TNF-α, and IL-6 than patients with DHF early after-fever onset. The IL-8 levels were similar in all cases regardless of the clinical condition or infection serotype. These results suggest that the association between high proinflammatory cytokine levels and dengue disease severity does not always stand, and it once again highlights the complex nature of DHF pathogenesis.


Asunto(s)
Femenino , Humanos , Masculino , Citocinas/metabolismo , Virus del Dengue/inmunología , Dengue Grave/inmunología , Virus del Dengue/clasificación , Dengue/inmunología , Ensayo de Inmunoadsorción Enzimática , Mediadores de Inflamación/metabolismo , Interferón gamma/sangre , /sangre , /sangre , /sangre , México , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Serogrupo , Estadísticas no Paramétricas , Dengue Grave/sangre , Factor de Necrosis Tumoral alfa/sangre
19.
Virology ; 488: 278-87, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26655246

RESUMEN

Dengue virus NS1 is a glycoprotein of 46-50kDa which associates as a dimer to internal and cytoplasmic membranes and is also secreted, as a hexamer, to the extracellular milieu. However, the notion exist that NS1 is secreted only from infected vertebrate and not mosquito cells. In this work, evidence is presented showing that NS1 is secreted efficiently by infected mosquito cells. NS1 was detected in cell supernatants starting at 6hpi with a continuous concentration increase up to 24hpi. Nevertheless, cell viability showed an average cell survival of 97%. At variance with observations with vertebrate cells, NS1 does not seems to associate with the cytoplasmic membrane of insect cells. Finally, evidence is presented indicating that NS1 is secreted from insect cells as a barrel-shaped hexamer. These findings provide new insights into the biology of NS1 and open questions about the role of secreted NS1 in the vector mosquito.


Asunto(s)
Culicidae/virología , Virus del Dengue/fisiología , Proteínas no Estructurales Virales/metabolismo , Animales , Línea Celular , Medios de Cultivo/química , Factores de Tiempo
20.
Virology ; 484: 113-126, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26092250

RESUMEN

Given dengue virus (DENV) genome austerity, it uses cellular molecules and structures for virion entry, translation and replication of the genome. NS1 is a multifunctional protein key to viral replication and pathogenesis. Identification of cellular proteins that interact with NS1 may help in further understanding the functions of NS1. In this paper we isolated a total of 64 proteins from DENV infected human hepatic cells (Huh-7) that interact with NS1 by affinity chromatography and immunoprecipitation assays. The subcellular location and expression levels during infection of the ribosomal proteins RPS3a, RPL7, RPL18, RPL18a plus GAPDH were determined. None of these proteins changed their expression levels during infection; however, RPL-18 was redistributed to the perinuclear region after 48hpi. Silencing of the RPL-18 does not affect cell translation efficiency or viability, but it reduces significantly viral translation, replication and viral yield, suggesting that the RPL-18 is required during DENV replicative cycle.


Asunto(s)
Virus del Dengue/fisiología , Hepatocitos/virología , Interacciones Huésped-Patógeno , Biosíntesis de Proteínas , Proteínas Ribosómicas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Línea Celular , Cromatografía de Afinidad , Humanos , Inmunoprecipitación , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...