Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Antioxid Redox Signal ; 39(13-15): 890-903, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37470216

RESUMEN

Aims: The goal of this study was to determine whether nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX)-produced reactive oxygen species (ROS) enhance brain tumor growth of glioblastoma (GBM) under hypoxic conditions and during radiation treatment. Results: Exogenous ROS promoted brain tumor growth in gliomasphere cultures that expressed functional phosphate and tensin homolog (PTEN), but not in tumors that were PTEN deficient. Hypoxia induced the production of endogenous cytoplasmic ROS and tumor cell growth via activation of NOX. NOX activation resulted in oxidation of PTEN and downstream protein kinase B (Akt) activation. Radiation also promoted ROS production via NOX, which, in turn, resulted in cellular protection that could be abrogated by knockdown of the key NOX component, p22. Knockdown of p22 also inhibited tumor growth and enhanced the efficacy of radiation in PTEN-expressing GBM cells. Innovation: While other studies have implicated NOX function in GBM models, this study demonstrates NOX activation and function under physiological hypoxia and following radiation in GBM, two conditions that are seen in patients. NOX plays an important role in a PTEN-expressing GBM model system, but not in PTEN-nonfunctional systems, and provides a potential, patient-specific therapeutic opportunity. Conclusion: This study provides a strong basis for pursuing NOX inhibition in PTEN-expressing GBM cells as a possible adjunct to radiation therapy. Antioxid. Redox Signal. 39, 890-903.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , NADP/metabolismo , Tensinas , Especies Reactivas de Oxígeno/metabolismo , Glioblastoma/genética , Glioblastoma/radioterapia , Glioblastoma/patología , Fosfatos , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Hipoxia
2.
Nutr Cancer ; 73(3): 404-419, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32281399

RESUMEN

Lynch syndrome (LS), is an autosomal dominant disorder predisposing patients to multiple cancers, predominantly colorectal (CRC) and endometrial, and is implicated in 2-4% of all CRC cases. LS is characterized by mutations of four mismatch repair (MMR) genes which code for proteins responsible for recognizing and repairing DNA lesions occurring through multiple mechanisms including oxidative stress (OS). Increased OS can cause DNA mutations and is considered carcinogenic. Due to reduced MMR activity, LS patients have an increased risk of cancer as a result of a decreased ability to recognize and repair DNA lesions caused by OS. Due to its carcinogenic properties, reducing the level of OS may reduce the risk of cancer. Nutritional Nrf2 activators have been shown to reduce the risk of carcinogenesis in the general population through activation of the endogenous antioxidant system. Common nutritional Nrf2 activators include sulforaphane, curcumin, DATS, quercetin, resveratrol, and EGCG. Since LS patients are more susceptible to carcinogenesis caused by OS, it is hypothesized that nutritional Nrf2 activators may have the potential to reduce the risk of cancer in those with LS by modulating OS and inflammation. The purpose of this paper is to review the available evidence in support of this statement.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Reparación de la Incompatibilidad de ADN , Humanos , Factor 2 Relacionado con NF-E2/agonistas , Factor 2 Relacionado con NF-E2/genética
3.
Cancer Metab ; 6: 4, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29692895

RESUMEN

BACKGROUND: There is considerable interest in defining the metabolic abnormalities of IDH mutant tumors to exploit for therapy. While most studies have attempted to discern function by using cell lines transduced with exogenous IDH mutant enzyme, in this study, we perform unbiased metabolomics to discover metabolic differences between a cohort of patient-derived IDH1 mutant and IDH wildtype gliomaspheres. METHODS: Using both our own microarray and the TCGA datasets, we performed KEGG analysis to define pathways differentially enriched in IDH1 mutant and IDH wildtype cells and tumors. Liquid chromatography coupled to mass spectrometry analysis with labeled glucose and deoxycytidine tracers was used to determine differences in overall cellular metabolism and nucleotide synthesis. Radiation-induced DNA damage and repair capacity was assessed using a comet assay. Differences between endogenous IDH1 mutant metabolism and that of IDH wildtype cells transduced with the IDH1 (R132H) mutation were also investigated. RESULTS: Our KEGG analysis revealed that IDH wildtype cells were enriched for pathways involved in de novo nucleotide synthesis, while IDH1 mutant cells were enriched for pathways involved in DNA repair. LC-MS analysis with fully labeled 13C-glucose revealed distinct labeling patterns between IDH1 mutant and wildtype cells. Additional LC-MS tracing experiments confirmed increased de novo nucleotide synthesis in IDH wildtype cells relative to IDH1 mutant cells. Endogenous IDH1 mutant cultures incurred less DNA damage than IDH wildtype cultures and sustained better overall growth following X-ray radiation. Overexpression of mutant IDH1 in a wildtype line did not reproduce the range of metabolic differences observed in lines expressing endogenous mutations, but resulted in depletion of glutamine and TCA cycle intermediates, an increase in DNA damage following radiation, and a rise in intracellular ROS. CONCLUSIONS: These results demonstrate that IDH1 mutant and IDH wildtype cells are easily distinguishable metabolically by analyzing expression profiles and glucose consumption. Our results also highlight important differences in nucleotide synthesis utilization and DNA repair capacity that could be exploited for therapy. Altogether, this study demonstrates that IDH1 mutant gliomas are a distinct subclass of glioma with a less malignant, but also therapy-resistant, metabolic profile that will likely require distinct modes of therapy.

4.
Neuro Oncol ; 20(6): 764-775, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29136244

RESUMEN

Background: Clinical trials of therapies directed against nodes of the signaling axis of phosphatidylinositol-3 kinase/Akt/mammalian target of rapamycin (mTOR) in glioblastoma (GBM) have had disappointing results. Resistance to mTOR inhibitors limits their efficacy. Methods: To determine mechanisms of resistance to chronic mTOR inhibition, we performed tandem screens on patient-derived GBM cultures. Results: An unbiased phosphoproteomic screen quantified phosphorylation changes associated with chronic exposure to the mTOR inhibitor rapamycin, and our analysis implicated a role for glycogen synthase kinase (GSK)3B attenuation in mediating resistance that was confirmed by functional studies. A targeted short hairpin RNA screen and further functional studies both in vitro and in vivo demonstrated that microtubule-associated protein (MAP)1B, previously associated predominantly with neurons, is a downstream effector of GSK3B-mediated resistance. Furthermore, we provide evidence that chronic rapamycin induces microtubule stability in a MAP1B-dependent manner in GBM cells. Additional experiments explicate a signaling pathway wherein combinatorial extracellular signal-regulated kinase (ERK)/mTOR targeting abrogates inhibitory phosphorylation of GSK3B, leads to phosphorylation of MAP1B, and confers sensitization. Conclusions: These data portray a compensatory molecular signaling network that imparts resistance to chronic mTOR inhibition in primary, human GBM cell cultures and points toward new therapeutic strategies.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/patología , Proteínas Asociadas a Microtúbulos/metabolismo , ARN Interferente Pequeño/genética , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Antibióticos Antineoplásicos/farmacología , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
5.
J Neurooncol ; 134(3): 505-512, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28233083

RESUMEN

Gliomas are the most malignant and aggressive form of brain tumors, and account for the majority of brain cancer related deaths. Malignant gliomas, including glioblastoma are treated with radiation and temozolomide, with only a minor benefit in survival time. A number of advances have been made in understanding glioma biology, including the discovery of cancer stem cells, termed glioma stem cells (GSC). Some of these advances include the delineation of molecular heterogeneity both between tumors from different patients as well as within tumors from the same patient. Such research highlights the importance of identifying and validating molecular markers in glioma. This review, intended as a practical resource for both clinical and basic investigators, summarizes some of the more well-known molecular markers (MGMT, 1p/19q, IDH, EGFR, p53, PI3K, Rb, and RAF), discusses how they are identified, and what, if any, clinical relevance they may have, in addition to discussing some of the specific biology for these markers. Additionally, we discuss identification methods for studying putative GSC's (CD133, CD15, A2B5, nestin, ALDH1, proteasome activity, ABC transporters, and label-retention). While much research has been done on these markers, there is still a significant amount that we do not yet understand, which may account for some conflicting reports in the literature. Furthermore, it is unlikely that the investigator will be able to utilize one single marker to prospectively identify and isolate GSC from all, or possibly, any gliomas.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Animales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioma/genética , Glioma/patología , Humanos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología
6.
J Cell Sci ; 128(1): 50-60, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25359885

RESUMEN

The cytokinetic furrow is organized by the RhoA GTPase, which recruits actin and myosin II to the furrow and drives contractility. Here, we show that the RhoA GTPase-activting protein (GAP) p190RhoGAP-A (also known as ARHGAP35) has a role in cytokinesis and is involved in regulating levels of RhoA-GTP and contractility. Cells depleted of p190RhoGAP-A accumulate high levels of RhoA-GTP and markers of high RhoA activity in the furrow, resulting in failure of the cytokinetic furrow to progress to abscission. The loss of p190RhoGAP-A can be rescued by a low dose of the myosin II inhibitor blebbistatin, suggesting that cells fail cytokinesis because they have too much myosin activity. p190RhoGAP-A binds the cytokinetic organizer anillin, and mutants of p190RhoGAP-A that are unable to bind anillin or unable to inactivate RhoA fail to rescue cytokinesis defects in p190RhoGAP-A-depleted cells. Taken together, these data demonstrate that a complex of p190RhoGAP-A and anillin modulates RhoA-GTP levels in the cytokinetic furrow to ensure progression of cytokinesis.


Asunto(s)
Citocinesis/fisiología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Represoras/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Citocinesis/efectos de los fármacos , Factores de Intercambio de Guanina Nucleótido/genética , Células HeLa , Compuestos Heterocíclicos de 4 o más Anillos , Humanos , Proteínas de Microfilamentos/genética , Mutación , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Proteínas Represoras/genética , Proteína de Unión al GTP rhoA/genética
7.
Genetics ; 197(3): 1039-44, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24793288

RESUMEN

A dozen genes/regions have been confirmed as genetic risk factors for oral clefts in human association and linkage studies, and animal models argue even more genes may be involved. Genomic sequencing studies should identify specific causal variants and may reveal additional genes as influencing risk to oral clefts, which have a complex and heterogeneous etiology. We conducted a whole exome sequencing (WES) study to search for potentially causal variants using affected relatives drawn from multiplex cleft families. Two or three affected second, third, and higher degree relatives from 55 multiplex families were sequenced. We examined rare single nucleotide variants (SNVs) shared by affected relatives in 348 recognized candidate genes. Exact probabilities that affected relatives would share these rare variants were calculated, given pedigree structures, and corrected for the number of variants tested. Five novel and potentially damaging SNVs shared by affected distant relatives were found and confirmed by Sanger sequencing. One damaging SNV in CDH1, shared by three affected second cousins from a single family, attained statistical significance (P = 0.02 after correcting for multiple tests). Family-based designs such as the one used in this WES study offer important advantages for identifying genes likely to be causing complex and heterogeneous disorders.


Asunto(s)
Fisura del Paladar/genética , Exoma/genética , Estudios de Asociación Genética , Mutación/genética , Análisis de Secuencia de ADN/métodos , Antígenos CD , Cadherinas/genética , Etnicidad/genética , Familia , Femenino , Humanos , Masculino , Linaje , Reproducibilidad de los Resultados
8.
BMC Cancer ; 13: 221, 2013 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-23638973

RESUMEN

BACKGROUND: The intestinal crypt homeostasis is maintained by a combination of growth factors including Wnt, R-Spondin1, Noggin and the epidermal growth factor (EGF). In human colorectal cancer, the Wnt pathway is constitutively activated through genetic and epigenetic alterations in as many as 11 genes encoding components of this crypt stem-cell maintenance mechanism. Although the proliferation of colon cancer cells does not require Wnt, it is possible that colon cancer cells can still respond to the crypt growth factors in the colonic microenvironment. A number of studies have shown that epithelial cells behave differently in 3-D versus 2-D cultures. Because the 3-D conditions more closely mimic the in vivo environment, we examined the effects of Wnt and other crypt growth factors on colon cancer cell growth in 3-D culture. METHODS: Colon cancer cells were grown in 3-D matrigel supplemented with different combinations of crypt growth factors and colonies were examined for morphology and pathways. RESULTS: When colon cancer cells were cultured in 3-D with EGF, they grew as round spheroid colonies. However, colon cancer cells also grew as flat, disc-like colonies when cultured with EGF plus Wnt, R-Spondin1 and Noggin. Disc colonies were found to have comparable levels of E-cadherin as the spheroid colonies, but showed decreased E-cadherin at the cell-matrix contact sites. Disc colonies also elaborated F-actin rich protrusions (FRP) at the cell-matrix edge, reminiscent of an invasive phenotype but without the expression of vimentin. These E-cadherin and F-actin alterations were not induced by the four growth factors in 2-D culture. Formation of the disc colonies was inhibited by the knockdown of ß-catenin and by protein kinase inhibitors such as gefitinib, imatinib and MK-2206. Furthermore, withdrawal of the crypt growth factors was able to revert the disc colonies to spheroid growth, showing that the invasive phenotype was reversible dependent on the availability of growth factors. CONCLUSIONS: These findings show that colon cancer cells remain responsive to the growth factors in the crypt microenvironment and can be induced to undergo morphological transformation in the more physiologically relevant 3-D culture.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Neoplasias del Colon/patología , Péptidos y Proteínas de Señalización Intercelular/farmacología , Transducción de Señal/efectos de los fármacos , Western Blotting , Proliferación Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Técnica del Anticuerpo Fluorescente , Células HCT116 , Células HT29 , Humanos , Microscopía Confocal , Fenotipo , Transducción de Señal/fisiología
9.
Mol Biol Cell ; 24(4): 465-73, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23264463

RESUMEN

The Wnt/ß-catenin pathway is constitutively activated in more than 90% of human colorectal cancer. Activated ß-catenin stimulates cell proliferation and survival, however, its antiapoptotic mechanisms are not fully understood. We show here that activated ß-catenin is required to suppress caspase-8 activation, but only in colon cancer cells that are resistant to tumor necrosis factor-α (TNF)-induced apoptosis. We found that lysosomal delivery of internalized TNF occurred at a faster pace in apoptosis-resistant than in apoptosis-sensitive colon cancer cells. Retardation of endosomal trafficking through vacuolar ATPase (V-ATPase) inhibition enhanced caspase-8 activation in apoptosis-resistant but not apoptosis-sensitive cells. Interestingly, knockdown of ß-catenin also prolonged TNF association with the early endosome and enhanced caspase-8 activation in apoptosis-resistant but not apoptosis-sensitive colon cancer cells. In a mouse model of inflammation-associated colon tumors, we found nuclear expression of ß-catenin, resistance to TNF-induced apoptosis, and reactivation of apoptosis in vivo after cotreatment of TNF with a V-ATPase inhibitor. Together these results suggest that activated ß-catenin can facilitate endosomal trafficking of internalized TNF to suppress caspase-8 activation in colon cancer cells.


Asunto(s)
Caspasa 8/genética , Neoplasias del Colon/genética , Regulación Neoplásica de la Expresión Génica , Lisosomas/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , beta Catenina/genética , Animales , Apoptosis/efectos de los fármacos , Caspasa 8/metabolismo , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Resistencia a Antineoplásicos/genética , Endocitosis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HCT116 , Humanos , Lisosomas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Transporte de Proteínas/efectos de los fármacos , ARN Interferente Pequeño/genética , Transducción de Señal/efectos de los fármacos , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , beta Catenina/antagonistas & inhibidores , beta Catenina/metabolismo
10.
Genes Cancer ; 2(1): 20-30, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21779478

RESUMEN

p190RhoGAP (p190) is a negative regulator of RhoGTPases and a putative tumor suppressor, whose mechanism of tumor suppression is poorly defined. Ectopic expression of p190 induces various morphological phenotypes, including multinucleation, dendrite-like formation, and chromatin condensation, suggesting an involvement in apoptosis. We examined the possibility that p190 can function as a tumor suppressor by regulating induction of apoptosis. We show that the predominant phenotype of p190 overexpression in a variety of cell lines is apoptosis, which is mediated through p190's regulation of Rho and caspases. The secondary phenotypes, multinucleation and dendrite-like formation, are determined by transformation status, not cell lineage, and appear to be intermediate phenotypes in the p190-induced apoptotic pathway. Finally, we show that p190 levels can regulate the apoptotic response of breast cancer cell lines to docetaxel through its regulation of Rho. Together, these findings suggest that one mechanism by which p190 can mediate its tumor-suppressive function is through regulation of Rho-activated cell death pathways and that this function can be exploited to optimize the action of cytoskeletal-based chemotherapeutics, such as the taxanes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...