Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39229046

RESUMEN

Activation of heterotrimeric G-proteins (Gαßγ) by G-protein-coupled receptors (GPCRs) is not only a mechanism broadly used by eukaryotes to transduce signals across the plasma membrane, but also the target for a large fraction of clinical drugs. However, approaches typically used to assess this signaling mechanism by directly measuring G-protein activity, like optical biosensors, suffer from limitations. On one hand, many of these biosensors require expression of exogenous GPCRs and/or G-proteins, compromising readout fidelity. On the other hand, biosensors that measure endogenous signaling may still interfere with the signaling process under investigation or suffer from having a small dynamic range of detection, hindering broad applicability. Here, we developed an optical biosensor that detects the endogenous G-protein active species Gαi-GTP upon stimulation of endogenous GPCRs more robustly than current state-of-the-art sensors for the same purpose. Its design is based on the principle of bystander Bioluminescence Resonance Energy Transfer (BRET) and leverages the Gαi-binding protein named GINIP as a high affinity and specific detector module of the GTP-bound conformation of Gαi. We optimized this design to prevent interference with Gi-dependent signaling (cAMP inhibition) and to enable implementation in different experimental systems with endogenous GPCRs, including neurotransmitter receptors in primary astroglial cells or opioid receptors in cell lines, which revealed opioid neuropeptide-mediated activation profiles different from those observed with other biosensors involving exogenous GPCRs and G-proteins. Overall, we introduce a biosensor that directly and sensitively detects endogenous activation of G-proteins by GPCRs across different experimental settings without interfering with the subsequent propagation of signaling.

2.
Cell ; 187(6): 1527-1546.e25, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38412860

RESUMEN

G protein-coupled receptors (GPCRs) are the largest family of druggable proteins encoded in the human genome, but progress in understanding and targeting them is hindered by the lack of tools to reliably measure their nuanced behavior in physiologically relevant contexts. Here, we developed a collection of compact ONE vector G-protein Optical (ONE-GO) biosensor constructs as a scalable platform that can be conveniently deployed to measure G-protein activation by virtually any GPCR with high fidelity even when expressed endogenously in primary cells. By characterizing dozens of GPCRs across many cell types like primary cardiovascular cells or neurons, we revealed insights into the molecular basis for G-protein coupling selectivity of GPCRs, pharmacogenomic profiles of anti-psychotics on naturally occurring GPCR variants, and G-protein subtype signaling bias by endogenous GPCRs depending on cell type or upon inducing disease-like states. In summary, this open-source platform makes the direct interrogation of context-dependent GPCR activity broadly accessible.


Asunto(s)
Técnicas Biosensibles , Transducción de Señal , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Unión al GTP/metabolismo
3.
bioRxiv ; 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38260348

RESUMEN

G protein-coupled receptors (GPCRs) are the largest family of druggable proteins in the human genome, but progress in understanding and targeting them is hindered by the lack of tools to reliably measure their nuanced behavior in physiologically-relevant contexts. Here, we developed a collection of compact ONE vector G-protein Optical (ONE-GO) biosensor constructs as a scalable platform that can be conveniently deployed to measure G-protein activation by virtually any GPCR with high fidelity even when expressed endogenously in primary cells. By characterizing dozens of GPCRs across many cell types like primary cardiovascular cells or neurons, we revealed new insights into the molecular basis for G-protein coupling selectivity of GPCRs, pharmacogenomic profiles of anti-psychotics on naturally-occurring GPCR variants, and G-protein subtype signaling bias by endogenous GPCRs depending on cell type or upon inducing disease-like states. In summary, this open-source platform makes the direct interrogation of context-dependent GPCR activity broadly accessible.

4.
Structure ; 32(1): 47-59.e7, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37989308

RESUMEN

It is well established that G-protein-coupled receptors (GPCRs) stimulated by neurotransmitters are critical for neuromodulation. Much less is known about how heterotrimeric G-protein (Gαßγ) regulation after receptor-mediated activation contributes to neuromodulation. Recent evidence indicates that the neuronal protein GINIP shapes GPCR inhibitory neuromodulation via a unique mechanism of G-protein regulation that controls pain and seizure susceptibility. However, the molecular basis of this mechanism remains ill-defined because the structural determinants of GINIP responsible for binding and regulating G proteins are not known. Here, we combined hydrogen-deuterium exchange mass spectrometry, computational structure predictions, biochemistry, and cell-based biophysical assays to demonstrate an effector-like binding mode of GINIP to Gαi. Specific amino acids of GINIP's PHD domain first loop are essential for G-protein binding and subsequent regulation of Gαi-GTP and Gßγ signaling upon neurotransmitter GPCR stimulation. In summary, these findings shed light onto the molecular basis for a post-receptor mechanism of G-protein regulation that fine-tunes inhibitory neuromodulation.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas , Transducción de Señal , Transducción de Señal/fisiología , Proteínas de Unión al GTP Heterotriméricas/química , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Unión Proteica , Neurotransmisores
5.
Mol Cell ; 83(14): 2540-2558.e12, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37390816

RESUMEN

G-protein-coupled receptors (GPCRs) mediate neuromodulation through the activation of heterotrimeric G proteins (Gαßγ). Classical models depict that G protein activation leads to a one-to-one formation of Gα-GTP and Gßγ species. Each of these species propagates signaling by independently acting on effectors, but the mechanisms by which response fidelity is ensured by coordinating Gα and Gßγ responses remain unknown. Here, we reveal a paradigm of G protein regulation whereby the neuronal protein GINIP (Gα inhibitory interacting protein) biases inhibitory GPCR responses to favor Gßγ over Gα signaling. Tight binding of GINIP to Gαi-GTP precludes its association with effectors (adenylyl cyclase) and, simultaneously, with regulator-of-G-protein-signaling (RGS) proteins that accelerate deactivation. As a consequence, Gαi-GTP signaling is dampened, whereas Gßγ signaling is enhanced. We show that this mechanism is essential to prevent the imbalances of neurotransmission that underlie increased seizure susceptibility in mice. Our findings reveal an additional layer of regulation within a quintessential mechanism of signal transduction that sets the tone of neurotransmission.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP , Proteínas de Unión al GTP Heterotriméricas , Ratones , Animales , Subunidades de Proteína/metabolismo , Transducción de Señal/fisiología , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Guanosina Trifosfato , Subunidades beta de la Proteína de Unión al GTP/genética
6.
bioRxiv ; 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37131787

RESUMEN

It is well-established that activation of heterotrimeric G-proteins (Gαßγ) by G-protein-coupled receptors (GPCRs) stimulated by neurotransmitters is a key mechanism underlying neuromodulation. Much less is known about how G-protein regulation after receptor-mediated activation contributes to neuromodulation. Recent evidence indicates that the neuronal protein GINIP shapes GPCR inhibitory neuromodulation via a unique mechanism of G-protein regulation that controls neurological processes like pain and seizure susceptibility. However, the molecular basis of this mechanism remains ill-defined because the structural determinants of GINIP responsible for binding Gαi subunits and regulating G-protein signaling are not known. Here, we combined hydrogen-deuterium exchange mass-spectrometry, protein folding predictions, bioluminescence resonance energy transfer assays, and biochemical experiments to identify the first loop of the PHD domain of GINIP as an obligatory requirement for Gαi binding. Surprisingly, our results support a model in which GINIP undergoes a long-range conformational change to accommodate Gαi binding to this loop. Using cell-based assays, we demonstrate that specific amino acids in the first loop of the PHD domain are essential for the regulation of Gαi-GTP and free Gßγ signaling upon neurotransmitter GPCR stimulation. In summary, these findings shed light onto the molecular basis for a post-receptor mechanism of G-protein regulation that fine-tunes inhibitory neuromodulation.

7.
Proc Natl Acad Sci U S A ; 120(18): e2213140120, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37098067

RESUMEN

Activation of heterotrimeric G-proteins (Gαßγ) by G-protein-coupled receptors (GPCRs) is a quintessential mechanism of cell signaling widely targeted by clinically approved drugs. However, it has become evident that heterotrimeric G-proteins can also be activated via GPCR-independent mechanisms that remain untapped as pharmacological targets. GIV/Girdin has emerged as a prototypical non-GPCR activator of G proteins that promotes cancer metastasis. Here, we introduce IGGi-11, a first-in-class small-molecule inhibitor of noncanonical activation of heterotrimeric G-protein signaling. IGGi-11 binding to G-protein α-subunits (Gαi) specifically disrupted their engagement with GIV/Girdin, thereby blocking noncanonical G-protein signaling in tumor cells and inhibiting proinvasive traits of metastatic cancer cells. In contrast, IGGi-11 did not interfere with canonical G-protein signaling mechanisms triggered by GPCRs. By revealing that small molecules can selectively disable noncanonical mechanisms of G-protein activation dysregulated in disease, these findings warrant the exploration of therapeutic modalities in G-protein signaling that go beyond targeting GPCRs.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas , Neoplasias , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Microfilamentos/metabolismo , Transducción de Señal , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Neoplasias/metabolismo
8.
bioRxiv ; 2023 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36824907

RESUMEN

Activation of heterotrimeric G-proteins (Gαßγ) by G-protein-coupled receptors (GPCRs) is a quintessential mechanism of cell signaling widely targeted by clinically-approved drugs. However, it has become evident that heterotrimeric G-proteins can also be activated via GPCR-independent mechanisms that remain untapped as pharmacological targets. GIV/Girdin has emerged as a prototypical non-GPCR activator of G proteins that promotes cancer metastasis. Here, we introduce IGGi-11, a first-in-class smallmolecule inhibitor of non-canonical activation of heterotrimeric G-protein signaling. IGGi-11 binding to G-protein α-subunits (Gαi) specifically disrupted their engagement with GIV/Girdin, thereby blocking non-canonical G-protein signaling in tumor cells, and inhibiting pro-invasive traits of metastatic cancer cells in vitro and in mice. In contrast, IGGi-11 did not interfere with canonical G-protein signaling mechanisms triggered by GPCRs. By revealing that small molecules can selectively disable non-canonical mechanisms of G-protein activation dysregulated in disease, these findings warrant the exploration of therapeutic modalities in G-protein signaling that go beyond targeting GPCRs.

9.
Elife ; 92020 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-32936073

RESUMEN

Heterotrimeric G-proteins are signal transducers involved in mediating the action of many natural extracellular stimuli and many therapeutic agents. Non-invasive approaches to manipulate the activity of G-proteins with high precision are crucial to understand their regulation in space and time. Here, we developed LOV2GIVe, an engineered modular protein that allows the activation of heterotrimeric G-proteins with blue light. This optogenetic construct relies on a versatile design that differs from tools previously developed for similar purposes, that is metazoan opsins, which are light-activated G-protein-coupled receptors (GPCRs). Instead, LOV2GIVe consists of the fusion of a G-protein activating peptide derived from a non-GPCR regulator of G-proteins to a small plant protein domain, such that light uncages the G-protein activating module. Targeting LOV2GIVe to cell membranes allowed for light-dependent activation of Gi proteins in different experimental systems. In summary, LOV2GIVe expands the armamentarium and versatility of tools available to manipulate heterotrimeric G-protein activity.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas , Optogenética/métodos , Proteínas de Plantas , Ingeniería de Proteínas/métodos , Proteínas Recombinantes de Fusión , Animales , Avena/genética , Escherichia coli/genética , Proteínas de Unión al GTP Heterotriméricas/química , Proteínas de Unión al GTP Heterotriméricas/genética , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Humanos , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética
10.
Sci Signal ; 13(617)2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019900

RESUMEN

The advent of deep-sequencing techniques has revealed that mutations in G protein-coupled receptor (GPCR) signaling pathways in cancer are more prominent than was previously appreciated. An emergent theme is that cancer-associated mutations tend to cause enhanced GPCR pathway activation to favor oncogenicity. Regulators of G protein signaling (RGS) proteins are critical modulators of GPCR signaling that dampen the activity of heterotrimeric G proteins through their GTPase-accelerating protein (GAP) activity, which is conferred by a conserved domain dubbed the "RGS-box." Here, we developed an experimental pipeline to systematically assess the mutational landscape of RGS GAPs in cancer. A pan-cancer bioinformatics analysis of the 20 RGS domains with GAP activity revealed hundreds of low-frequency mutations spread throughout the conserved RGS domain structure with a slight enrichment at positions that interface with G proteins. We empirically tested multiple mutations representing all RGS GAP subfamilies and sampling both G protein interface and noninterface positions with a scalable, yeast-based assay. Last, a subset of mutants was validated using G protein activity biosensors in mammalian cells. Our findings reveal that a sizable fraction of RGS protein mutations leads to a loss of function through various mechanisms, including disruption of the G protein-binding interface, loss of protein stability, or allosteric effects on G protein coupling. Moreover, our results also validate a scalable pipeline for the rapid characterization of cancer-associated mutations in RGS proteins.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas/genética , Mutación , Neoplasias/genética , Proteínas RGS/genética , Receptores Acoplados a Proteínas G/genética , Transducción de Señal , Secuencia de Aminoácidos , Carcinogénesis/genética , Células HEK293 , Proteínas de Unión al GTP Heterotriméricas/química , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Humanos , Modelos Moleculares , Neoplasias/metabolismo , Unión Proteica , Dominios Proteicos , Proteínas RGS/química , Proteínas RGS/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Homología de Secuencia de Aminoácido
11.
J Biol Chem ; 293(51): 19586-19599, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30352874

RESUMEN

The causative role of G protein-coupled receptor (GPCR) pathway mutations in uveal melanoma (UM) has been well-established. Nearly all UMs bear an activating mutation in a GPCR pathway mediated by G proteins of the Gq/11 family, driving tumor initiation and possibly metastatic progression. Thus, targeting this pathway holds therapeutic promise for managing UM. However, direct targeting of oncogenic Gαq/11 mutants, present in ∼90% of UMs, is complicated by the belief that these mutants structurally resemble active Gαq/11 WT. This notion is solidly founded on previous studies characterizing Gα mutants in which a conserved catalytic glutamine (Gln-209 in Gαq) is replaced by leucine, which leads to GTPase function deficiency and constitutive activation. Whereas Q209L accounts for approximately half of GNAQ mutations in UM, Q209P is as frequent as Q209L and also promotes oncogenesis, but has not been characterized at the molecular level. Here, we characterized the biochemical and signaling properties of Gαq Q209P and found that it is also GTPase-deficient and activates downstream signaling as efficiently as Gαq Q209L. However, Gαq Q209P had distinct molecular and functional features, including in the switch II region of Gαq Q209P, which adopted a conformation different from that of Gαq Q209L or active WT Gαq, resulting in altered binding to effectors, Gßγ, and regulators of G-protein signaling (RGS) proteins. Our findings reveal that the molecular properties of Gαq Q209P are fundamentally different from those in other active Gαq proteins and could be leveraged as a specific vulnerability for the ∼20% of UMs bearing this mutation.


Asunto(s)
Carcinogénesis/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Mutación , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Humanos , Modelos Moleculares , Conformación Proteica en Hélice alfa , Transducción de Señal/genética
12.
J Biol Chem ; 293(44): 16964-16983, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30194280

RESUMEN

Recent evidence has revealed that heterotrimeric G-proteins can be activated by cytoplasmic proteins that share an evolutionarily conserved sequence called the Gα-binding-and-activating (GBA) motif. This mechanism provides an alternative to canonical activation by G-protein-coupled receptors (GPCRs) and plays important roles in cell function, and its dysregulation is linked to diseases such as cancer. Here, we describe a discovery pipeline that uses biochemical and genetic approaches to validate GBA candidates identified by sequence similarity. First, putative GBA motifs discovered in bioinformatics searches were synthesized on peptide arrays and probed in batch for Gαi3 binding. Then, cDNAs encoding proteins with Gαi3-binding sequences were expressed in a genetically-modified yeast strain that reports mammalian G-protein activity in the absence of GPCRs. The resulting GBA motif candidates were characterized by comparison of their biochemical, structural, and signaling properties with those of all previously described GBA motifs in mammals (GIV/Girdin, DAPLE, Calnuc, and NUCB2). We found that the phospholipase Cδ4 (PLCδ4) GBA motif binds G-proteins with high affinity, has guanine nucleotide exchange factor activity in vitro, and activates G-protein signaling in cells, as indicated by bioluminescence resonance energy transfer (BRET)-based biosensors of G-protein activity. Interestingly, the PLCδ4 isoform b (PLCδ4b), which lacks the domains required for PLC activity, bound and activated G-proteins more efficiently than the full-length isoform a, suggesting that PLCδ4b functions as a G-protein regulator rather than as a PLC. In summary, we have identified PLCδ4 as a nonreceptor activator of G-proteins and established an experimental pipeline to discover and characterize GBA motif-containing proteins.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas/metabolismo , Fosfolipasa C delta/química , Fosfolipasa C delta/genética , Secuencias de Aminoácidos , Cristalografía por Rayos X , Subunidades alfa de la Proteína de Unión al GTP/química , Subunidades alfa de la Proteína de Unión al GTP/genética , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de Unión al GTP Heterotriméricas/química , Proteínas de Unión al GTP Heterotriméricas/genética , Humanos , Fosfolipasa C delta/metabolismo , Unión Proteica , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal
13.
Sci Rep ; 8(1): 9504, 2018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29934601

RESUMEN

Exoglycosidases are often used for detailed characterization of glycan structures. Bovine kidney α-fucosidase is commonly used to determine the presence of core α1-6 fucose on N-glycans, an important modification of glycoproteins. Recently, several studies have reported that removal of core α1-6-linked fucose from N-glycans labeled with the reactive N-hydroxysuccinimide carbamate fluorescent labels 6-aminoquinolyl-N-hydroxysuccinimidylcarbamate (AQC) and RapiFluor-MS is severely impeded. We report here the cloning, expression and biochemical characterization of an α-fucosidase from Omnitrophica bacterium (termed fucosidase O). We show that fucosidase O can efficiently remove α1-6- and α1-3-linked core fucose from N-glycans. Additionally, we demonstrate that fucosidase O is able to efficiently hydrolyze core α1-6-linked fucose from N-glycans labeled with any of the existing NHS-carbamate activated fluorescent dyes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA