Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 13(22)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34833209

RESUMEN

The treatment of skin wounds poses significant clinical challenges, including the risk of bacterial infection. In particular due to its antimicrobial and tissue regeneration abilities chitosan (a polymeric biomaterial obtained by the deacetylation of chitin) has received extensive attention for its effectiveness in promoting skin wound repair. On the other hand, due to their intrinsic characteristics, metal nanoparticles (e.g., silver (Ag), gold (Au) or iron oxide (Fe3O4)) have demonstrated therapeutic properties potentially useful in the field of skin care. Therefore, the combination of these two promising materials (chitosan plus metal oxide NPs) could permit the achievement of a promising nanohybrid with enhanced properties that could be applied in advanced skin treatment. In this work, we have optimized the synthesis protocol of chitosan/metal hybrid nanoparticles by means of a straightforward synthetic method, ionotropic gelation, which presents a wide set of advantages. The synthesized hybrid NPs have undergone to a full physicochemical characterization. After that, the in vitro antibacterial and tissue regenerative activities of the achieved hybrids have been assessed in comparison to their individual constituent. As result, we have demonstrated the synergistic antibacterial plus the tissue regeneration enhancement of these nanohybrids as a consequence of the fusion between chitosan and metallic nanoparticles, especially in the case of chitosan/Fe3O4 hybrid nanoparticles.

2.
Polymers (Basel) ; 13(17)2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34503029

RESUMEN

Cancer is the second leading cause of death in the world, which is why it is so important to make an early and very precise diagnosis to obtain a good prognosis. Thanks to the combination of several imaging modalities in the form of the multimodal molecular imaging (MI) strategy, a great advance has been made in early diagnosis, in more targeted and personalized therapy, and in the prediction of the results that will be obtained once the anticancer treatment is applied. In this context, magnetic nanoparticles have been positioned as strong candidates for diagnostic agents as they provide very good imaging performance. Furthermore, thanks to their high versatility, when combined with other molecular agents (for example, fluorescent molecules or radioisotopes), they highlight the advantages of several imaging techniques at the same time. These hybrid nanosystems can be also used as multifunctional and/or theranostic systems as they can provide images of the tumor area while they administer drugs and act as therapeutic agents. Therefore, in this review, we selected and identified more than 160 recent articles and reviews and offer a broad overview of the most important concepts that support the synthesis and application of multifunctional magnetic nanoparticles as molecular agents in advanced cancer detection based on the multimodal molecular imaging approach.

3.
Angew Chem Int Ed Engl ; 59(47): 21080-21087, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-32755070

RESUMEN

Enzyme-powered micro/nanomotors have myriads of potential applications in various areas. To efficiently reach those applications, it is necessary and critical to understand the fundamental aspects affecting the motion dynamics. Herein, we explored the impact of enzyme orientation on the performance of lipase-powered nanomotors by tuning the lipase immobilization strategies. The influence of the lipase orientation and lid conformation on substrate binding and catalysis was analyzed using molecular dynamics simulations. Besides, the motion performance indicates that the hydrophobic binding (via OTES) represents the best orienting strategy, providing 48.4 % and 95.4 % increase in diffusion coefficient compared to hydrophilic binding (via APTES) and Brownian motion (no fuel), respectively (with C[triacetin] of 100 mm). This work provides vital evidence for the importance of immobilization strategy and corresponding enzyme orientation for the catalytic activity and in turn, the motion performance of nanomotors, and is thus helpful to future applications.


Asunto(s)
Lipasa/química , Nanotecnología , Saccharomycetales/enzimología , Interacciones Hidrofóbicas e Hidrofílicas , Lipasa/metabolismo , Simulación de Dinámica Molecular , Tamaño de la Partícula , Conformación Proteica , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA