Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurochem ; 102(3): 967-76, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17504262

RESUMEN

Angiotensin IV and LVV-hemorphin 7 promote robust enhancing effects on learning and memory. These peptides are also competitive inhibitors of the insulin-regulated membrane aminopeptidase, suggesting that the biological actions of these peptides may result from inhibition of IRAP activity. However, the normal function of IRAP in the brain is yet to be determined. The present study investigated the sub-cellular distribution of IRAP in four neuronal cell lines and in the mouse brain. Using sub-cellular fractionation, IRAP was found to be enriched in low density microsomes, while lower levels of IRAP were also present in high density microsomes, plasma membrane and mitochondrial fractions. Dual-label immunohistochemistry confirmed the presence of IRAP in vesicles co-localized with the vesicular maker VAMP2, in the trans Golgi network co-localized with TGN 38 and in endosomes co-localized with EEA1. Finally using electron microscopy, IRAP specific immunoreactivity was predominantly associated with large 100-200 nm vesicles in hippocampal neurons. The location, appearance and size of these vesicles are consistent with neurosecretory vesicles. IRAP precipitate was also detected in intracellular structures including the rough endoplasmic reticulum, Golgi stack and mitochondrial membranes. The sub-cellular localization of IRAP in neurons demonstrated in the present study bears striking parallels with distribution of IRAP in insulin responsive cells, where the enzyme plays a role in insulin-regulated glucose uptake. Therefore, we propose that the function of IRAP in neurons may be similar to that in insulin responsive cells.


Asunto(s)
Cistinil Aminopeptidasa/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Vesículas Secretoras/metabolismo , Animales , Línea Celular Tumoral , Glucosa/metabolismo , Hipocampo/ultraestructura , Humanos , Inmunohistoquímica , Insulina/metabolismo , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Neuronas/ultraestructura , Sistemas Neurosecretores/metabolismo , Sistemas Neurosecretores/ultraestructura , Orgánulos/metabolismo , Orgánulos/ultraestructura , Vesículas Secretoras/ultraestructura , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
2.
Am J Physiol Regul Integr Comp Physiol ; 290(2): R331-40, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16195497

RESUMEN

The aim of this study was to determine the contribution of neuropeptide Y (NPY) Y1 receptors in neurally mediated reductions in renal medullary perfusion. In pentobarbital sodium-anesthetized rabbits, electrical stimulation of the renal nerves (RNS, 0.5-16 Hz) decreased renal perfusion in a frequency-dependent manner. Under control conditions, 4 Hz reduced cortical and medullary perfusion by -85 +/- 3% and -43 +/- 7%, whereas 8 Hz reduced them by -93 +/- 2% and -73 +/- 4%, respectively. After Y1 receptor antagonism with BIBO3304TF (0.1 mg/kg plus 0.2 mg x kg x (-1) x h(-1)), RNS reduced perfusion less (by -65 +/- 9% and -12 +/- 8% at 4 Hz) x alpha1-Adrenoceptor antagonism with prazosin (0.2 mg/kg plus 0.2 mg kg(-1)h(-1)) also inhibited RNS-induced reductions in renal perfusion (-80 +/- 4% and -37 +/- 10% reductions in the cortex and medulla, respectively, at 8 Hz). When given after BIBO3304TF treatment, prazosin inhibited RNS-induced reductions in cortical and medullary perfusion more profoundly (-57 +/- 12% and -25 +/- 9% reductions, respectively, at 8 Hz) x Y1 receptor- and alpha1-adrenoceptor-blockade were confirmed by testing vascular responses to renal arterial NPY and phenylephrine boluses. NPY-positive immunolabeling was observed around interlobular arteries, afferent and efferent arterioles, and in the outer medulla. In conclusion, Y1 receptors and alpha1-adrenoceptors contribute to RNS-induced vasoconstriction in the vessels that control both cortical and medullary perfusion. Consistent with this, NPY immunostaining was associated with blood vessels that control perfusion in both regions. There also seems to be an interaction between Y1 receptors and alpha1-adrenoceptor-mediated neurotransmission in the control of renal perfusion.


Asunto(s)
Riñón/irrigación sanguínea , Riñón/inervación , Receptores Adrenérgicos alfa 1/metabolismo , Receptores de Neuropéptido Y/clasificación , Receptores de Neuropéptido Y/metabolismo , Antagonistas Adrenérgicos alfa/farmacología , Animales , Arginina/análogos & derivados , Arginina/farmacología , Presión Sanguínea , Frecuencia Cardíaca , Riñón/citología , Riñón/efectos de los fármacos , Masculino , Fenilefrina/farmacología , Prazosina/farmacología , Conejos , Receptores de Neuropéptido Y/antagonistas & inhibidores
3.
J Vasc Res ; 42(4): 348-58, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16015033

RESUMEN

Hypertrophy of the perivascular plexus is thought to play a role in the development of hypertension in spontaneously hypertensive rats (SHR). However, it is not known whether the sympathetic varicosities are more numerous or larger, or form more neurovascular junctions. Further, a parallel hypertrophy of primary afferent terminals around the vessels might modulate any effects of hypertrophied sympathetic terminals. We have investigated the perivascular plexus around second-order mesenteric arteries of SHR and Wistar-Kyoto (WKY) rats by electron microscopy. Noradrenergic terminals were identified by the presence of small granular vesicles after chromaffin fixation, and substance P (SP+) afferent axons were identified by immunohistochemistry. The numbers of noradrenergic axon and varicosity profiles were higher (48 and 25%, respectively) in SHR than in WKY rats, and the majority lay closer to the medio-adventitial border. In contrast, there was no difference in the numbers of SP+ axons. Sympathetic and SP+ varicosities were indistinguishable in size, shape, vesicle content and mitochondrion content between each other and between the strains. However, both the number of neuromuscular junctions and the proportion of varicosities that formed them in SHR arteries were more than double those in WKY vessels. The data clearly show that hyperinnervation in SHR is specific for noradrenergic axons.


Asunto(s)
Axones/fisiología , Hipertensión/fisiopatología , Arterias Mesentéricas/inervación , Neuronas Aferentes/fisiología , Sistema Nervioso Simpático/fisiología , Animales , Tejido Conectivo/inervación , Hipertensión/patología , Masculino , Arterias Mesentéricas/patología , Arterias Mesentéricas/ultraestructura , Microscopía Electrónica , Unión Neuromuscular/fisiopatología , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Ratas Wistar , Sustancia P/análisis
4.
Clin Exp Pharmacol Physiol ; 31(5-6): 380-6, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15191417

RESUMEN

The renal nerves constrict the renal vasculature, causing decreases in renal blood flow (RBF) and glomerular filtration rate (GFR). Whether renal haemodynamics are influenced by changes in renal nerve activity within the physiological range is a matter of debate. We have identified two morphologically distinct populations of nerves within the kidney, which are differentially distributed to the renal afferent and efferent arterioles. Type I nerves almost exclusively innervate the afferent arteriole whereas type II nerves are distributed equally on the afferent and efferent arterioles. We have also demonstrated that type II nerves are immunoreactive for neuropeptide Y, whereas type I nerves are not. This led us to hypothesize that, in the kidney, distinct populations of nerves innervate specific effector tissues and that these nerves may be selectively activated, setting the basis for the differential neural control of GFR. In physiological studies, we demonstrated that differential changes in glomerular capillary pressure occurred in response to graded reflex activation of the renal nerves, compatible with our hypothesis. Thus, sympathetic outflow may be capable of selectively increasing or decreasing glomerular capillary pressure and, hence, GFR by differentially activating separate populations of renal nerves. This has important implications for our understanding of the neural control of body fluid balance in health and disease.


Asunto(s)
Tasa de Filtración Glomerular/fisiología , Hemofiltración , Glomérulos Renales/inervación , Glomérulos Renales/fisiología , Neuronas/fisiología , Animales , Humanos
5.
J Cell Sci ; 117(Pt 11): 2333-43, 2004 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-15126633

RESUMEN

We have used the tetrameric nature of the fluorescent protein DsRed to cross-link F(1)F(O)-ATPase complexes incorporating a subunit gamma-DsRed fusion protein in vivo. Cells expressing such a fusion protein have impaired growth relative to control cells. Strikingly, fluorescence microscopy of these cells revealed aberrant mitochondrial morphology. Electron microscopy of cell sections revealed the absence of cristae and multiple layers of unfolded inner mitochondrial membrane. Complexes recovered from detergent lysates of mitochondria were present largely as tetramers. Co-expression of 'free' DsRed targeted to the mitochondria reduced F(1)F(O)-ATPase oligomerisation and partially reversed the impaired growth and abnormal mitochondrial morphology. We conclude that the correct arrangement of F(1)F(O)-ATPase complexes within the mitochondrial inner membrane is crucial for the genesis and/or maintenance of mitochondrial cristae and morphology. Our findings further suggest that F(1)F(O)-ATPase can exist in oligomeric associations within the membrane during respiratory growth.


Asunto(s)
Reactivos de Enlaces Cruzados/metabolismo , Membranas Intracelulares/enzimología , Mitocondrias/enzimología , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , División Celular , Reactivos de Enlaces Cruzados/química , Membranas Intracelulares/patología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Mitocondrias/patología , ATPasas de Translocación de Protón Mitocondriales/genética , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Unión Proteica , Estructura Cuaternaria de Proteína , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética
6.
Hypertension ; 43(3): 643-8, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14757774

RESUMEN

This study investigated the effects of angiotensin II "slow pressor" hypertension on structure and function of nerves supplying the renal vasculature. Low-dose angiotensin II (10 ng/kg per minute, initially sub-pressor) or saline vehicle was infused intravenously for 21 days in rats, and the effects were compared in renal and mesenteric arteries. Mean arterial pressure averaged 12+/-2 mm Hg higher than in vehicle-infused rats at 21 days. Using electron microscopy, the innervation density of renal arcuate, but not mesenteric arteries of equivalent size, was significantly higher in angiotensin II-infused than in vehicle-infused rats. Functional testing on a pressure myograph revealed that constrictions evoked by nerve stimulation in arcuate arteries were 2.3+/-0.7-fold greater in vessels from angiotensin II-infused compared with vehicle-infused rats (P<0.0001), whereas there was no significant difference in nerve-induced constrictions in mesenteric arteries. Sensitivity to and maximum amplitude of constrictions evoked by phenylephrine were not different in renal or mesenteric arteries between groups, suggesting that the increased neurally evoked constriction in renal arcuate arteries was not caused by postsynaptic changes. Endothelium-dependent vasorelaxation and the vessel wall physical properties were not different between the two groups in either artery. Thus, angiotensin II infusion appeared to evoke renal-specific increases in vessel innervation and increased vasoconstriction to nerve stimulation. These changes appear early and occur before changes in renal endothelial function are apparent. Thus, "slow pressor" angiotensin II hypertension is associated with increased renal innervation, compatible with a pathogenetic role.


Asunto(s)
Angiotensina II/farmacología , Hipertensión/fisiopatología , Riñón/irrigación sanguínea , Arteria Renal/inervación , Vasoconstricción , Angiotensina II/administración & dosificación , Animales , Axones/ultraestructura , Endotelio Vascular/fisiopatología , Hipertensión/inducido químicamente , Hipertensión/patología , Infusiones Intravenosas , Riñón/inervación , Masculino , Arterias Mesentéricas/inervación , Músculo Liso/efectos de los fármacos , Músculo Liso/fisiopatología , Fenilefrina/farmacología , Ratas , Ratas Sprague-Dawley , Arteria Renal/fisiología , Sistema Nervioso Simpático/efectos de los fármacos , Vasoconstricción/efectos de los fármacos , Vasodilatación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...