Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mBio ; 13(5): e0173222, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36066101

RESUMEN

During bacterial endospore formation, the developing spore is internalized into the mother cell through a phagocytic-like process called engulfment, which involves synthesis and hydrolysis of peptidoglycan. Engulfment peptidoglycan hydrolysis requires the widely conserved and well-characterized DMP complex, composed of SpoIID, SpoIIM, and SpoIIP. In contrast, although peptidoglycan synthesis has been implicated in engulfment, the protein players involved are less well defined. The widely conserved SpoIIIAH-SpoIIQ interaction is also required for engulfment efficiency, functioning like a ratchet to promote membrane migration around the forespore. Here, we screened for additional factors required for engulfment using transposon sequencing in Bacillus subtilis mutants with mild engulfment defects. We discovered that YrvJ, a peptidoglycan hydrolase, and the MurA paralog MurAB, involved in peptidoglycan precursor synthesis, are required for efficient engulfment. Cytological analyses suggest that both factors are important for engulfment when the DMP complex is compromised and that MurAB is additionally required when the SpoIIIAH-SpoIIQ ratchet is abolished. Interestingly, despite the importance of MurAB for sporulation in B. subtilis, phylogenetic analyses of MurA paralogs indicate that there is no correlation between sporulation and the number of MurA paralogs and further reveal the existence of a third MurA paralog, MurAC, within the Firmicutes. Collectively, our studies identify two new factors that are required for efficient envelop remodeling during sporulation and highlight the importance of peptidoglycan precursor synthesis for efficient engulfment in B. subtilis and likely other endospore-forming bacteria. IMPORTANCE In bacteria, cell envelope remodeling is critical for cell growth and division. This is also the case during the development of bacteria into highly resistant endospores (spores), known as sporulation. During sporulation, the developing spore becomes internalized inside the mother cell through a phagocytic-like process called engulfment, which is essential to form the cell envelope of the spore. Engulfment involves both the synthesis and hydrolysis of peptidoglycan and the stabilization of migrating membranes around the developing spore. Importantly, although peptidoglycan synthesis has been implicated during engulfment, the specific genes that contribute to this molecular element of engulfment have remained unclear. Our study identifies two new factors that are required for efficient envelope remodeling during engulfment and emphasizes the importance of peptidoglycan precursor synthesis for efficient engulfment in the model organism Bacillus subtilis and likely other endospore-forming bacteria. Finally, our work highlights the power of synthetic screens to reveal additional genes that contribute to essential processes during sporulation.


Asunto(s)
Bacillus subtilis , Peptidoglicano , Bacillus subtilis/metabolismo , Peptidoglicano/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/genética , Filogenia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Esporas Bacterianas
2.
JACS Au ; 2(2): 522-530, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35253001

RESUMEN

Polarized or precision targeting of protein complexes to their destinations is fundamental to cellular homeostasis, but the mechanism underpinning directional protein delivery is poorly understood. Here, we use the uropod targeting HIV synapse as a model system to show that the viral assembly machinery Gag is copolarized with the intracellular calcium (Ca2+) gradient and binds specifically with Ca2+. Conserved glutamic/aspartic acids flanking endosomal sorting complexes required for transport binding motifs are major Ca2+ binding sites. Deletion or mutation of these Ca2+ binding residues resulted in altered protein trafficking phenotypes, including (i) changes in the Ca2+-Gag distribution relationship during uropod targeting and/or (ii) defects in homo/hetero-oligomerization with Gag. Mutation of Ca2+ binding amino acids is associated with enhanced ubiquitination and a decline in virion release via uropod protein complex delivery. Our data that show Ca2+-protein binding, via the intracellular Ca2+ gradient, represents a mechanism that regulates intracellular protein trafficking.

3.
Dev Cell ; 56(1): 36-51.e5, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33383000

RESUMEN

Asymmetric division, a hallmark of endospore development, generates two cells, a larger mother cell and a smaller forespore. Approximately 75% of the forespore chromosome must be translocated across the division septum into the forespore by the DNA translocase SpoIIIE. Asymmetric division also triggers cell-specific transcription, which initiates septal peptidoglycan remodeling involving synthetic and hydrolytic enzymes. How these processes are coordinated has remained a mystery. Using Bacillus subtilis, we identified factors that revealed the link between chromosome translocation and peptidoglycan remodeling. In cells lacking these factors, the asymmetric septum retracts, resulting in forespore cytoplasmic leakage and loss of DNA translocation. Importantly, these phenotypes depend on septal peptidoglycan hydrolysis. Our data support a model in which SpoIIIE is anchored at the edge of a septal pore, stabilized by newly synthesized peptidoglycan and protein-protein interactions across the septum. Together, these factors ensure coordination between chromosome translocation and septal peptidoglycan remodeling to maintain spore development.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Segregación Cromosómica , Cromosomas/metabolismo , Peptidoglicano/metabolismo , Esporas Bacterianas/crecimiento & desarrollo , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Pared Celular/enzimología , Cromosomas/genética , Microscopía Electrónica de Transmisión , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano/biosíntesis , Peptidoglicano/genética , Proteínas Periplasmáticas/genética , Proteínas Periplasmáticas/metabolismo , Unión Proteica , Esporas Bacterianas/genética , Esporas Bacterianas/metabolismo , Esporas Bacterianas/ultraestructura
4.
PLoS Genet ; 16(12): e1009246, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33315869

RESUMEN

How organisms develop into specific shapes is a central question in biology. The maintenance of bacterial shape is connected to the assembly and remodelling of the cell envelope. In endospore-forming bacteria, the pre-spore compartment (the forespore) undergoes morphological changes that result in a spore of defined shape, with a complex, multi-layered cell envelope. However, the mechanisms that govern spore shape remain poorly understood. Here, using a combination of fluorescence microscopy, quantitative image analysis, molecular genetics and transmission electron microscopy, we show that SsdC (formerly YdcC), a poorly-characterized new member of the MucB / RseB family of proteins that bind lipopolysaccharide in diderm bacteria, influences spore shape in the monoderm Bacillus subtilis. Sporulating cells lacking SsdC fail to adopt the typical oblong shape of wild-type forespores and are instead rounder. 2D and 3D-fluorescence microscopy suggest that SsdC forms a discontinuous, dynamic ring-like structure in the peripheral membrane of the mother cell, near the mother cell proximal pole of the forespore. A synthetic sporulation screen identified genetic relationships between ssdC and genes involved in the assembly of the spore coat. Phenotypic characterization of these mutants revealed that spore shape, and SsdC localization, depend on the coat basement layer proteins SpoVM and SpoIVA, the encasement protein SpoVID and the inner coat protein SafA. Importantly, we found that the ΔssdC mutant produces spores with an abnormal-looking cortex, and abolishing cortex synthesis in the mutant largely suppresses its shape defects. Thus, SsdC appears to play a role in the proper assembly of the spore cortex, through connections to the spore coat. Collectively, our data suggest functional diversification of the MucB / RseB protein domain between diderm and monoderm bacteria and identify SsdC as an important factor in spore shape development.


Asunto(s)
Proteínas Bacterianas/metabolismo , Esporas Bacterianas/metabolismo , Bacillus subtilis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Pared Celular/metabolismo , Mutación , Dominios Proteicos , Esporas Bacterianas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...