Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Int ; 157: 106864, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34537521

RESUMEN

BACKGROUND: Air quality contributes to incidence of Alzheimer's disease (AD) although the underlying neurobiological mechanisms are unclear. This study was aimed to examine the association between air pollution and concentrations of cerebrospinal fluid (CSF) AD biomarkers and amyloid-ß (Aß) deposition. Participants and methods The sample included 156 cognitively unimpaired adults aged 57 years (61 at biomarkers assessment) with increased risk of AD from the ALFA + Study. We examined CSF levels of Aß42, Aß40, p-Tau, t-Tau, neurofilament light (NfL) and cerebral amyloid load (Centiloid). A Land Use Regression model from 2009 was used to estimate residential exposure to air pollutants including nitrogen dioxide (NO2,) and particulate matter (PM2.5, PM2.5 abs, PM10). This model was considered a surrogate of long-term exposure until time of data collection in 2013-2014. Participants have resided in the same residence for at least the previous 3 years. Multiple linear regression models were used to estimate associations between air pollutants and biomarkers. The effect modification by CSF Aß status and APOE-ε4 carriership was also assessed. RESULTS: A consistent pattern of results indicated that greater exposure to NO2 and PM2.5 absorbance was associated with higher levels of brain Aß deposition, while greater exposure to PM10 and PM2.5was associated with higher levels of CSF NfL. Most associations were driven by individuals that were Aß-positive. Although APOE-ε4 status did not significantly modify these associations, the effect of air pollutants exposure on CSF NfL levels was stronger in APOE-ε4 carriers. CONCLUSION: In a population of cognitively unimpaired adults with increased risk of AD, long-term exposure to air pollution was associated with higher levels in biomarkers of AD pathology. While further research is granted to elucidate the mechanisms involved in such associations, our results reinforce the role of air pollution as an environmental risk factor for AD.


Asunto(s)
Contaminación del Aire , Enfermedad de Alzheimer , Adulto , Contaminación del Aire/efectos adversos , Péptidos beta-Amiloides , Biomarcadores , Humanos , Proteínas tau
2.
Environ Int ; 138: 105546, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32151419

RESUMEN

BACKGROUND: Air quality might contribute to incidence of dementia-related disorders, including Alzheimer's dementia (AD). The aim of our study is to evaluate the effect of urban environmental exposures (including exposure to air pollution, noise and green space) on cognitive performance and brain structure of cognitively unimpaired individuals at risk for AD. PARTICIPANTS AND METHODS: The ALFA (ALzheimer and FAmilies) study is a prospective cohort of middle-age, cognitively unimpaired subjects, many of them offspring of AD patients. Cognitive performance was measured by the administration of episodic memory and executive function tests (N = 958). Structural brain imaging was performed in a subsample of participants to obtain morphological information of brain areas, specially focused on cortical thickness, known to be affected by AD (N = 228). Land Use Regression models were used to estimate residential exposure to air pollutants. The daily average noise level at the street nearest to each participant's residential address was obtained from noise maps. For each participant residential green exposure indicators, such as surrounding greenness or amount of green, were generated. General linear models were conducted to assess the association between environmental exposures, cognitive performance and brain structure in a cross-sectional analysis. RESULTS: No significant associations were observed between urban environmental exposures and the cognitive composite (p > 0.1). Higher exposure to air pollutants, but not noise, was associated with lower cortical thickness in brain regions known to be affected by AD, especially NO2 (ß = -16.4; p = 0.05) and PM10 (ß = -5.34; p = 0.05). On the other hand, increasing greenness indicators was associated with greater thickness in these same areas (ß = 0.08; p = 0.03). CONCLUSION: In cognitively unimpaired adults with increased risk for AD, increased exposure to air pollution was suggested to be associated with greater global atrophy and reduced volume and thickness in specific brain areas known to be affected in AD, thus suggesting a potential link between environmental exposures and cerebral vulnerability to AD. Although more research in the field is needed, air pollution reduction is crucial for decreasing the burden of age-related disorders.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Enfermedad de Alzheimer , Adulto , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Encéfalo/diagnóstico por imagen , Cognición , Estudios Transversales , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Humanos , Persona de Mediana Edad , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA