Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 15(726): eadg8105, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38091410

RESUMEN

Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, affects millions of people in the Americas and across the world, leading to considerable morbidity and mortality. Current treatment options, benznidazole (BNZ) and nifurtimox, offer limited efficacy and often lead to adverse side effects because of long treatment durations. Better treatment options are therefore urgently required. Here, we describe a pyrrolopyrimidine series, identified through phenotypic screening, that offers an opportunity to improve on current treatments. In vitro cell-based washout assays demonstrate that compounds in the series are incapable of killing all parasites; however, combining these pyrrolopyrimidines with a subefficacious dose of BNZ can clear all parasites in vitro after 5 days. These findings were replicated in a clinically predictive in vivo model of chronic Chagas disease, where 5 days of treatment with the combination was sufficient to prevent parasite relapse. Comprehensive mechanism of action studies, supported by ligand-structure modeling, show that compounds from this pyrrolopyrimidine series inhibit the Qi active site of T. cruzi cytochrome b, part of the cytochrome bc1 complex of the electron transport chain. Knowledge of the molecular target enabled a cascade of assays to be assembled to evaluate selectivity over the human cytochrome b homolog. As a result, a highly selective and efficacious lead compound was identified. The combination of our lead compound with BNZ rapidly clears T. cruzi parasites, both in vitro and in vivo, and shows great potential to overcome key issues associated with currently available treatments.


Asunto(s)
Enfermedad de Chagas , Parásitos , Tripanocidas , Trypanosoma cruzi , Animales , Humanos , Citocromos b , Tripanocidas/efectos adversos , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/inducido químicamente , Enfermedad de Chagas/parasitología
3.
Biomedicines ; 11(1)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36672660

RESUMEN

Lung cancer is still the leading cause of cancer-related death worldwide. Interest is growing towards early detection and advances in liquid biopsy to isolate circulating tumor cells (CTCs). This pilot study aimed to detect epithelial CTCs in the peripheral blood of early-stage non-small cell lung cancer (NSCLC) patients. We used Smart BioSurface® (SBS) slide, a nanoparticle-coated slide able to immobilize viable nucleated cellular fraction without pre-selection and preserve cell integrity. Forty patients undergoing lung resection for NSCLC were included; they were divided into two groups according to CTC value, with a cut-off of three CTCs/mL. All patients were positive for CTCs. The mean CTC value was 4.7(± 5.8 S.D.) per ml/blood. In one patient, next generation sequencing (NGS) analysis of CTCs revealed v-raf murine sarcoma viral oncogene homolog B(BRAF) V600E mutation, which has also been identified in tissue biopsy. CTCs count affected neither overall survival (OS, p = 0.74) nor progression-free survival (p = 0.829). Multivariable analysis confirmed age (p = 0.020) and pNodal-stage (p = 0.028) as negative predictors of OS. Preliminary results of this pilot study suggest the capability of this method in detecting CTCs in all early-stage NSCLC patients. NGS on single cell, identified as CTC by immunofluorescence staining, is a powerful tool for investigating the molecular landscape of cancer, with the aim of personalized therapies.

4.
J Med Chem ; 65(18): 12292-12318, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36084304

RESUMEN

Drug development efforts that focused on single targets failed to provide effective treatment for Alzheimer's disease (AD). Therefore, we designed cholinesterase inhibition (ChEI)-based multi-target-directed ligands (MTDLs) to simultaneously target AD-related receptors. We built a library of 70 compounds, sequentially screened for ChEI, and determined σ1R, σ2R, NMDAR-GluN2B binding affinities, and P2X7R antagonistic activities. Nine fulfilled in silico drug-likeness criteria and did not display toxicity in three cell lines. Seven displayed cytoprotective activity in two stress-induced cellular models. Compared to donepezil, six showed equal/better synaptic protection in a zebrafish model of acute amyloidosis-induced synaptic degeneration. Two P2X7R antagonists alleviated the activation state of microglia in vivo. Permeability studies were performed, and four did not inhibit CYP450 3A4, 2D6, and 2C9. Therefore, four ChEI-based lead MTDLs are promising drug candidates for synaptic integrity protection and could serve as disease-modifying AD treatment. Our study also proposes zebrafish as a useful preclinical tool for drug discovery and development.


Asunto(s)
Enfermedad de Alzheimer , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Animales , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Colinesterasas , Donepezilo/uso terapéutico , Plomo/uso terapéutico , Ligandos , Pez Cebra/metabolismo
5.
Int J Mol Sci ; 22(11)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34072837

RESUMEN

The chromatin reader protein Spindlin1 plays an important role in epigenetic regulation, through which it has been linked to several types of malignant tumors. In the current work, we report on the development of novel analogs of the previously published lead inhibitor A366. In an effort to improve the activity and explore the structure-activity relationship (SAR), a series of 21 derivatives was synthesized, tested in vitro, and investigated by means of molecular modeling tools. Docking studies and molecular dynamics (MD) simulations were performed to analyze and rationalize the structural differences responsible for the Spindlin1 activity. The analysis of MD simulations shed light on the important interactions. Our study highlighted the main structural features that are required for Spindlin1 inhibitory activity, which include a positively charged pyrrolidine moiety embedded into the aromatic cage connected via a propyloxy linker to the 2-aminoindole core. Of the latter, the amidine group anchor the compounds into the pocket through salt bridge interactions with Asp184. Different protocols were tested to identify a fast in silico method that could help to discriminate between active and inactive compounds within the A366 series. Rescoring the docking poses with MM-GBSA calculations was successful in this regard. Because A366 is known to be a G9a inhibitor, the most active developed Spindlin1 inhibitors were also tested over G9a and GLP to verify the selectivity profile of the A366 analogs. This resulted in the discovery of diverse selective compounds, among which 1s and 1t showed Spindlin1 activity in the nanomolar range and selectivity over G9a and GLP. Finally, future design hypotheses were suggested based on our findings.


Asunto(s)
Fenómenos Biofísicos , Proteínas de Ciclo Celular/química , Epigénesis Genética , Proteínas Asociadas a Microtúbulos/química , Fosfoproteínas/química , Conformación Proteica , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/ultraestructura , Entropía , Humanos , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/ultraestructura , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/genética , Fosfoproteínas/ultraestructura , Unión Proteica , Relación Estructura-Actividad
6.
J Comput Aided Mol Des ; 35(6): 695-706, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34081238

RESUMEN

Some of the main challenges faced in drug discovery are pocket flexibility and binding mode prediction. In this work, we explored the aromatic cage flexibility of the histone methyllysine reader protein Spindlin1 and its impact on binding mode prediction by means of in silico approaches. We first investigated the Spindlin1 aromatic cage plasticity by analyzing the available crystal structures and through molecular dynamic simulations. Then we assessed the ability of rigid docking and flexible docking to rightly reproduce the binding mode of a known ligand into Spindlin1, as an example of a reader protein displaying flexibility in the binding pocket. The ability of induced fit docking was further probed to test if the right ligand binding mode could be obtained through flexible docking regardless of the initial protein conformation. Finally, the stability of generated docking poses was verified by molecular dynamic simulations. Accurate binding mode prediction was obtained showing that the herein reported approach is a highly promising combination of in silico methods able to rightly predict the binding mode of small molecule ligands in flexible binding pockets, such as those observed in some reader proteins.


Asunto(s)
Proteínas de Ciclo Celular/química , Histonas/química , Hidrocarburos Aromáticos/química , Proteínas Asociadas a Microtúbulos/química , Fosfoproteínas/química , Secuencia de Aminoácidos , Sitios de Unión , Simulación por Computador , Ligandos , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica
7.
Cancer Cell ; 39(5): 708-724.e11, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33798472

RESUMEN

Metastasis is facilitated by the formation of a "premetastatic niche," which is fostered by primary tumor-derived factors. Colorectal cancer (CRC) metastasizes mainly to the liver. We show that the premetastatic niche in the liver is induced by bacteria dissemination from primary CRC. We report that tumor-resident bacteria Escherichia coli disrupt the gut vascular barrier (GVB), an anatomical structure controlling bacterial dissemination along the gut-liver axis, depending on the virulence regulator VirF. Upon GVB impairment, bacteria disseminate to the liver, boost the formation of a premetastatic niche, and favor the recruitment of metastatic cells. In training and validation cohorts of CRC patients, we find that the increased levels of PV-1, a marker of impaired GVB, is associated with liver bacteria dissemination and metachronous distant metastases. Thus, PV-1 is a prognostic marker for CRC distant recurrence and vascular impairment, leading to liver metastases.


Asunto(s)
Neoplasias Colorrectales/irrigación sanguínea , Neoplasias Colorrectales/patología , Neoplasias Hepáticas/patología , Metástasis de la Neoplasia/patología , Recurrencia Local de Neoplasia/patología , Bacterias/aislamiento & purificación , Neoplasias del Colon/irrigación sanguínea , Neoplasias del Colon/patología , Humanos , Hígado/patología , Neoplasias Hepáticas/secundario
9.
Arch Pharm (Weinheim) ; 354(5): e2000467, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33511649

RESUMEN

A series of urolithin amide (i.e., URO-4-URO-10 and THU-4-THU-10) derivatives was designed and synthesized, and their chemical structures were confirmed with spectroscopic techniques and elemental analysis. The title compounds and synthesis intermediates (THU-1-THU-10 and URO-1-URO-10) were evaluated for their potential to inhibit acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and monoamine oxidase B (MAO-B). Compounds THU-4 and THU-8 were found to be the most potent inhibitors for the cholinesterases and MAO-B, respectively. The docking studies were also employed to evaluate the binding modes of the most active compounds with AChE, BuChE, and MAO-B. Furthermore, the moderate-to-strong activities of the compounds were also displayed in amyloid-beta inhibition and antioxidant assay systems. The results pointed out that the urolithin scaffold can be employed in drug design studies for the development of multitarget ligands acting on various cascades shown to be important within the pathophysiology of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Amidas/farmacología , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Fármacos Neuroprotectores/farmacología , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/metabolismo , Amidas/síntesis química , Amidas/química , Butirilcolinesterasa/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Monoaminooxidasa/metabolismo , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Relación Estructura-Actividad
10.
Chem Biodivers ; 17(8): e2000197, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32497364

RESUMEN

Urolithins (that is, hydroxy substituted benzo[c]chromen-6-one derivatives) are formed within the gastrointestinal tract following to the exposure to various ellagitannin rich diet, particularly involving pomegranate, nuts, and berries. Regarding the bioavailability deficiency of ellagitannins, the biological activities obtained through the extracts of these dietaries are attributed to the urolithin compounds, since they are bioavailable. Particularly, there are studies indicating the importance of ellagitannin-rich food for protective and alternative treatment of Alzheimer's Disease (AD). From this perspective, within this study, the major urolithins (that is, urolithins A and B), their methyl ether metabolites, as well as some synthetic urolithin analogs have been synthesized and screened for their biological activities in various enzyme inhibition (acetylcholinesterase, butyrylcholinesterase, monoamine oxidase B, cyclooxygenase 1, and cyclooxygenase 2) and antioxidant (DPPH radical scavenging) assay systems. The results pointed out the potential of urolithins to act as inhibitors on these receptors. Docking studies were also performed to investigate the possible interactions.


Asunto(s)
Benzopiranos/química , Benzopiranos/farmacología , Antioxidantes/farmacología , Benzopiranos/síntesis química , Inhibidores Enzimáticos/farmacología , Humanos , Taninos Hidrolizables/administración & dosificación , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad
11.
Biochimie ; 165: 32-39, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31278967

RESUMEN

Matrix metalloproteinases are a class of enzymes, which degrade extracellular matrix components such as collagens, elastin, laminin or fibronectin. So far, four matrix metalloproteinases have been shown to degrade elastin and its precursor tropoelastin, namely matrix metalloproteinase-2, -7, -9 and -12. This study focuses on investigating the elastinolytic capability of membrane-type 1 matrix metalloproteinase, also known as matrix metalloproteinase-14. We digested recombinant human tropoelastin and human skin elastin with matrix metalloproteinase-14 and analyzed the peptide mixtures using complementary mass spectrometric techniques and bioinformatics tools. The results and additional molecular docking studies show that matrix metalloproteinase-14 cleaves tropoelastin as well as elastin. While tropoelastin was well degraded, fewer cleavages occurred in the highly cross-linked mature elastin. The study also provides insights into the cleavage preferences of the enzyme. Similar to cleavage preferences of matrix metalloproteinases-2, -7, -9 and -12, matrix metalloproteinase-14 prefers small and medium-sized hydrophobic residues including Gly, Ala, Leu and Val at cleavage site P1'. Pro, Gly and Ala were preferably found at P1-P4 and P2'-P4' in both tropoelastin and elastin. Cleavage of mature skin elastin by matrix metalloproteinase-14 released a variety of bioactive elastin peptides, which indicates that the enzyme may play a role in the development and progression of cardiovascular diseases that go along with elastin breakdown.


Asunto(s)
Elastina/metabolismo , Metaloproteinasa 14 de la Matriz/metabolismo , Proteolisis , Tropoelastina/metabolismo , Humanos , Simulación del Acoplamiento Molecular/métodos
12.
Elife ; 82019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30829570

RESUMEN

The biological players involved in angiogenesis are only partially defined. Here, we report that endothelial cells (ECs) express a novel isoform of the cell-surface adhesion molecule L1CAM, termed L1-ΔTM. The splicing factor NOVA2, which binds directly to L1CAM pre-mRNA, is necessary and sufficient for the skipping of L1CAM transmembrane domain in ECs, leading to the release of soluble L1-ΔTM. The latter exerts high angiogenic function through both autocrine and paracrine activities. Mechanistically, L1-ΔTM-induced angiogenesis requires fibroblast growth factor receptor-1 signaling, implying a crosstalk between the two molecules. NOVA2 and L1-ΔTM are overexpressed in the vasculature of ovarian cancer, where L1-ΔTM levels correlate with tumor vascularization, supporting the involvement of NOVA2-mediated L1-ΔTM production in tumor angiogenesis. Finally, high NOVA2 expression is associated with poor outcome in ovarian cancer patients. Our results point to L1-ΔTM as a novel, EC-derived angiogenic factor which may represent a target for innovative antiangiogenic therapies.


Asunto(s)
Empalme Alternativo , Proteínas Angiogénicas/metabolismo , Células Endoteliales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Células Cultivadas , Humanos , Antígeno Ventral Neuro-Oncológico
13.
Methods Mol Biol ; 1824: 347-370, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30039418

RESUMEN

Computer-based approaches represent a powerful tool which helps to identify and optimize lead structures in the process of drug discovery. Computer-aided drug design techniques (CADD) encompass a large variety of methods which are subdivided into structure-based (SBDD) and ligand-based drug design (LBDD) methods. Several approaches have been successfully used over the last three decades in different fields. Indeed also in the field of epigenetics, virtual screening (VS) studies and structure-based approaches have been applied to identify novel chemical modulators of epigenetic targets as well as to predict the binding mode of active ligands and to study the protein dynamics.In this chapter, an iterative VS approach using both SBDD and LBDD methods, which was successful in identifying Spindlin1 inhibitors, will be described. All protocol steps, starting from structure-based pharmacophore modeling, protein and database preparation along with docking and similarity search, will be explained in details.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Diseño de Fármacos , Descubrimiento de Drogas/métodos , Epigenómica/métodos , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Simulación de Dinámica Molecular , Fosfoproteínas/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Fosfoproteínas/metabolismo
14.
Nat Commun ; 9(1): 2085, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29789562

RESUMEN

The originally published version of this Article contained an error in the name of the author Salvatore Corallino, which was incorrectly given as Corallino Salvatore. This has now been corrected in both the PDF and HTML versions of the Article.

15.
Nat Commun ; 9(1): 1475, 2018 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-29662076

RESUMEN

How cells move chemotactically remains a major unmet challenge in cell biology. Emerging evidence indicates that for interpreting noisy, shallow gradients of soluble cues a system must behave as an excitable process. Here, through an RNAi-based, high-content screening approach, we identify RAB35 as necessary for the formation of growth factors (GFs)-induced waves of circular dorsal ruffles (CDRs), apically restricted actin-rich migratory protrusions. RAB35 is sufficient to induce recurrent and polarized CDRs that travel as propagating waves, thus behaving as an excitable system that can be biased to control cell steering. Consistently, RAB35 is essential for promoting directed chemotactic migration and chemoinvasion of various cells in response to gradients of motogenic GFs. Molecularly, RAB35 does so by directly regulating the activity of p85/PI3K polarity axis. We propose that RAB35 is a molecular determinant for the control of an excitable, oscillatory system that acts as a steering wheel for GF-mediated chemotaxis and chemoinvasion.


Asunto(s)
Quimiotaxis/genética , Fosfatidilinositol 3-Quinasa Clase Ia/genética , Células Epiteliales/metabolismo , Fibroblastos/metabolismo , Proteínas de Unión al GTP rab/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , Animales , Línea Celular Tumoral , Quimiotaxis/efectos de los fármacos , Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/ultraestructura , Fibroblastos/efectos de los fármacos , Fibroblastos/ultraestructura , Expresión Génica , Células HeLa , Humanos , Ratones , Imagen Molecular , Factor de Crecimiento Derivado de Plaquetas/farmacología , Cultivo Primario de Células , Transducción de Señal , Proteínas de Unión al GTP rab/metabolismo
16.
Cancer Res ; 78(13): 3432-3444, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29691252

RESUMEN

USP6NL, also named RN-tre, is a GTPase-activating protein involved in control of endocytosis and signal transduction. Here we report that USP6NL is overexpressed in breast cancer, mainly of the basal-like/integrative cluster 10 subtype. Increased USP6NL levels were accompanied by gene amplification and were associated with worse prognosis in the METABRIC dataset, retaining prognostic value in multivariable analysis. High levels of USP6NL in breast cancer cells delayed endocytosis and degradation of the EGFR, causing chronic AKT (protein kinase B) activation. In turn, AKT stabilized the glucose transporter GLUT1 at the plasma membrane, increasing aerobic glycolysis. In agreement, elevated USP6NL sensitized breast cancer cells to glucose deprivation, indicating that their glycolytic capacity relies on this protein. Depletion of USP6NL accelerated EGFR/AKT downregulation and GLUT1 degradation, impairing cell proliferation exclusively in breast cancer cells that harbored increased levels of USP6NL. Overall, these findings argue that USP6NL overexpression generates a metabolic rewiring that is essential to foster the glycolytic demand of breast cancer cells and promote their proliferation.Significance: USP6NL overexpression leads to glycolysis addiction of breast cancer cells and presents a point of metabolic vulnerability for therapeutic targeting in a subset of aggressive basal-like breast tumors.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/13/3432/F1.large.jpg Cancer Res; 78(13); 3432-44. ©2018 AACR.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias de la Mama/patología , Proteínas Activadoras de GTPasa/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Línea Celular Tumoral , Proliferación Celular , Conjuntos de Datos como Asunto , Receptores ErbB/metabolismo , Femenino , Proteínas Activadoras de GTPasa/genética , Amplificación de Genes , Glucólisis , Humanos , Fosforilación , Pronóstico , Estabilidad Proteica , Proteolisis , Análisis de Supervivencia
17.
Biochimie ; 146: 73-78, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29196110

RESUMEN

Neprilysin is also known as skin fibroblast-derived elastase, and its up-regulation during aging is associated with impairments of the elastic fiber network, loss of skin elasticity and wrinkle formation. However, information on its elastase activity is still limited. The aim of this study was to investigate the degradation of fibrillar skin elastin by neprilysin and the influence of the donor's age on the degradation process using mass spectrometry and bioinformatics approaches. The results showed that cleavage by neprilysin is dependent on previous damage of elastin. While neprilysin does not cleave young and intact skin elastin well, it degrades elastin fibers from older donors, which may further promote aging processes. With regards to the cleavage behavior of neprilysin, a strong preference for Gly at P1 was found, while Gly, Ala and Val were well accepted at P1' upon cleavage of tropoelastin and skin elastin. The results of the study indicate that the progressive release of bioactive elastin peptides by neprilysin upon skin aging may enhance local tissue damage and accelerate extracellular matrix aging processes.


Asunto(s)
Elastina/metabolismo , Neprilisina/metabolismo , Proteolisis , Piel/metabolismo , Anciano , Secuencia de Aminoácidos , Niño , Elastina/química , Humanos , Masculino , Simulación del Acoplamiento Molecular , Conformación Proteica
18.
ChemMedChem ; 11(20): 2327-2338, 2016 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-27634332

RESUMEN

The methyllysine reader protein Spindlin1 has been implicated in the tumorigenesis of several types of cancer and may be an attractive novel therapeutic target. Small-molecule inhibitors of Spindlin1 should be valuable as chemical probes as well as potential new therapeutics. We applied an iterative virtual screening campaign, encompassing structure- and ligand-based approaches, to identify potential Spindlin1 inhibitors from databases of commercially available compounds. Our in silico studies coupled with in vitro testing were successful in identifying novel Spindlin1 inhibitors. Several 4-aminoquinazoline and quinazolinethione derivatives were among the active hit compounds, which indicated that these scaffolds represent promising lead structures for the development of Spindlin1 inhibitors. Subsequent lead optimization studies were hence carried out, and numerous derivatives of both lead scaffolds were synthesized. This resulted in the discovery of novel inhibitors of Spindlin1 and helped explore the structure-activity relationships of these inhibitor series.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Fosfoproteínas/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
19.
Oncotarget ; 6(14): 12697-709, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25885523

RESUMEN

CCDC6 gene product is a pro-apoptotic protein substrate of ATM, whose loss or inactivation enhances tumour progression. In primary tumours, the impaired function of CCDC6 protein has been ascribed to CCDC6 rearrangements and to somatic mutations in several neoplasia. Recently, low levels of CCDC6 protein, in NSCLC, have been correlated with tumor prognosis. However, the mechanisms responsible for the variable levels of CCDC6 in primary tumors have not been described yet.We show that CCDC6 turnover is regulated in a cell cycle dependent manner. CCDC6 undergoes a cyclic variation in the phosphorylated status and in protein levels that peak at G2 and decrease in mitosis. The reduced stability of CCDC6 in the M phase is dependent on mitotic kinases and on degron motifs that are present in CCDC6 and direct the recruitment of CCDC6 to the FBXW7 E3 Ubl. The de-ubiquitinase enzyme USP7 appears responsible of the fine tuning of the CCDC6 stability, affecting cells behaviour and drug response.Thus, we propose that the amount of CCDC6 protein in primary tumors, as reported in lung, may depend on the impairment of the CCDC6 turnover due to altered protein-protein interaction and post-translational modifications and may be critical in optimizing personalized therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Resistencia a Antineoplásicos/fisiología , Proteínas F-Box/metabolismo , Neoplasias Pulmonares/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Western Blotting , Ciclo Celular/fisiología , Línea Celular Tumoral , Proteína 7 que Contiene Repeticiones F-Box-WD , Femenino , Técnica del Anticuerpo Fluorescente , Técnicas de Inactivación de Genes , Humanos , Masculino , Persona de Mediana Edad , ARN Interferente Pequeño , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Matrices Tisulares , Transfección , Peptidasa Específica de Ubiquitina 7
20.
Int J Cancer ; 136(9): 2146-57, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25302833

RESUMEN

Non-small cell lung cancer (NSCLC) is the main cause of cancer-related death worldwide and new therapeutic strategies are urgently needed. In this study, we have characterized a panel of NSC lung cancer cell lines for the expression of coiled-coil-domain containing 6 (CCDC6), a tumor suppressor gene involved in apoptosis and DNA damage response. We show that low CCDC6 protein levels are associated with a weak response to DNA damage and a low number of Rad51 positive foci. Moreover, CCDC6 deficient lung cancer cells show defects in DNA repair via homologous recombination. In accordance with its role in the DNA damage response, CCDC6 attenuation confers resistance to cisplatinum, the current treatment of choice for NSCLC, but sensitizes the cells to olaparib, a small molecule inhibitor of the repair enzymes PARP1/2. Remarkably, the combination of the two drugs is more effective than each agent individually, as demonstrated by a combination index <1. Finally, CCDC6 is expressed at low levels in about 30% of the NSCL tumors we analyzed by TMA immunostaining. The weak CCDC6 protein staining is significatively correlated with the presence of lymph node metastasis (p ≤ 0.02) and negatively correlated to the disease free survival (p ≤ 0.01) and the overall survival (p ≤ 0.05). Collectively, the data indicate that CCDC6 levels provide valuable insight for OS. CCDC6 could represent a predictive biomarker of resistance to conventional single mode therapy and yield insight on tumor sensitivity to PARP inhibitors in NSCLC.


Asunto(s)
Antineoplásicos/farmacología , Proteínas del Citoesqueleto/deficiencia , Neoplasias Pulmonares/tratamiento farmacológico , Anciano , Anciano de 80 o más Años , Apoptosis/efectos de los fármacos , Apoptosis/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Cisplatino/farmacología , Proteínas del Citoesqueleto/genética , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Reparación del ADN/efectos de los fármacos , Reparación del ADN/genética , Supervivencia sin Enfermedad , Femenino , Humanos , Neoplasias Pulmonares/genética , Metástasis Linfática/genética , Masculino , Persona de Mediana Edad , Ftalazinas , Piperazinas , Recombinasa Rad51/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...