Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gastroenterology ; 166(1): 103-116.e9, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37716376

RESUMEN

BACKGROUND & AIMS: CXADR-like membrane protein (CLMP) is structurally related to coxsackie and adenovirus receptor. Pathogenic variants in CLMP gene have been associated with congenital short bowel syndrome, implying a role for CLMP in intestinal development. However, the contribution of CLMP to regulating gut development and homeostasis is unknown. METHODS: In this study, we investigated CLMP function in the colonic epithelium using complementary in vivo and in vitro approaches, including mice with inducible intestinal epithelial cell (IEC)-specific deletion of CLMP (ClmpΔIEC), intestinal organoids, IECs with overexpression, or loss of CLMP and RNA sequencing data from individuals with colorectal cancer. RESULTS: Loss of CLMP enhanced IEC proliferation and, conversely, CLMP overexpression reduced proliferation. Xenograft experiments revealed increased tumor growth in mice implanted with CLMP-deficient colonic tumor cells, and poor engraftment was observed with CLMP-overexpressing cells. ClmpΔIEC mice showed exacerbated tumor burden in an azoxymethane and dextran sulfate sodium-induced colonic tumorigenesis model, and CLMP expression was reduced in human colorectal cancer samples. Mechanistic studies revealed that CLMP-dependent regulation of IEC proliferation is linked to signaling through mTOR-Akt-ß-catenin pathways. CONCLUSIONS: These results reveal novel insights into CLMP function in the colonic epithelium, highlighting an important role in regulating IEC proliferation, suggesting tumor suppressive function in colon cancer.


Asunto(s)
Colitis , Neoplasias del Colon , Animales , Humanos , Ratones , Proliferación Celular , Colitis/inducido químicamente , Colitis/metabolismo , Neoplasias del Colon/patología , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus , Células Epiteliales/patología , Mucosa Intestinal/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
2.
Nat Commun ; 14(1): 6214, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37798277

RESUMEN

Claudin family tight junction proteins form charge- and size-selective paracellular channels that regulate epithelial barrier function. In the gastrointestinal tract, barrier heterogeneity is attributed to differential claudin expression. Here, we show that claudin-23 (CLDN23) is enriched in luminal intestinal epithelial cells where it strengthens the epithelial barrier. Complementary approaches reveal that CLDN23 regulates paracellular ion and macromolecule permeability by associating with CLDN3 and CLDN4 and regulating their distribution in tight junctions. Computational modeling suggests that CLDN23 forms heteromeric and heterotypic complexes with CLDN3 and CLDN4 that have unique pore architecture and overall net charge. These computational simulation analyses further suggest that pore properties are interaction-dependent, since differently organized complexes with the same claudin stoichiometry form pores with unique architecture. Our findings provide insight into tight junction organization and propose a model whereby different claudins combine to form multiple distinct complexes that modify epithelial barrier function by altering tight junction structure.


Asunto(s)
Claudinas , Uniones Estrechas , Uniones Estrechas/metabolismo , Claudinas/genética , Claudinas/química , Simulación por Computador , Células Epiteliales/metabolismo
3.
PNAS Nexus ; 1(5): pgac249, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36712325

RESUMEN

Clinical symptoms in many inflammatory diseases of the intestine are directly related to neutrophil (PMN) migration across colonic mucosa and into the intestinal lumen, yet in-vivo studies detailing this process are lacking. Using real-time intravital microscopy and a new distal colon loop model, we report distinct PMN migratory dynamics in response to several models of acute colonic injury. PMNs exhibited rapid swarming responses after mechanically induced intestinal wounds. Similar numbers of PMNs infiltrated colonic mucosa after wounding in germ-free mice, suggesting microbiota-independent mechanisms. By contrast, acute mucosal injury secondary to either a treatment of mice with dextran sodium sulfate or an IL-10 receptor blockade model of colitis resulted in lamina propria infiltration with PMNs that were largely immotile. Biopsy wounding of colonic mucosa in DSS-treated mice did not result in enhanced PMN swarming however, intraluminal application of the neutrophil chemoattractant LTB4 under such conditions resulted in enhanced transepithelial migration of PMNs. Analyses of PMNs that had migrated into the colonic lumen revealed that the majority of PMNs were directly recruited from the circulation and not from the immotile pool in the mucosa. Decreased PMN motility parallels upregulation of the receptor CXCR4 and apoptosis. Similarly, increased expression of CXCR4 on human PMNs was observed in colonic biopsies from people with active ulcerative colitis. This new approach adds an important tool to investigate mechanisms regulating PMN migration across mucosa within the distal intestine and will provide new insights for developing future anti-inflammatory and pro-repair therapies.

4.
J Vis Exp ; (168)2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33645571

RESUMEN

The intestinal mucosa is lined by a single layer of epithelial cells that forms a dynamic barrier allowing paracellular transport of nutrients and water while preventing passage of luminal bacteria and exogenous substances. A breach of this layer results in increased permeability to luminal contents and recruitment of immune cells, both of which are hallmarks of pathologic states in the gut including inflammatory bowel disease (IBD). Mechanisms regulating epithelial barrier function and transepithelial migration (TEpM) of polymorphonuclear neutrophils (PMN) are incompletely understood due to the lack of experimental in vivo methods allowing quantitative analyses. Here, we describe a robust murine experimental model that employs an exteriorized intestinal segment of either ileum or proximal colon. The exteriorized intestinal loop (iLoop) is fully vascularized and offers physiological advantages over ex vivo chamber-based approaches commonly used to study permeability and PMN migration across epithelial cell monolayers. We demonstrate two applications of this model in detail: (1) quantitative measurement of intestinal permeability through detection of fluorescence-labeled dextrans in serum after intraluminal injection, (2) quantitative assessment of migrated PMN across the intestinal epithelium into the gut lumen after intraluminal introduction of chemoattractants. We demonstrate feasibility of this model and provide results utilizing the iLoop in mice lacking the epithelial tight junction-associated protein JAM-A compared to controls. JAM-A has been shown to regulate epithelial barrier function as well as PMN TEpM during inflammatory responses. Our results using the iLoop confirm previous studies and highlight the importance of JAM-A in regulation of intestinal permeability and PMN TEpM in vivo during homeostasis and disease. The iLoop model provides a highly standardized method for reproducible in vivo studies of intestinal homeostasis and inflammation and will significantly enhance understanding of intestinal barrier function and mucosal inflammation in diseases such as IBD.


Asunto(s)
Mucosa Intestinal/citología , Mucosa Intestinal/fisiología , Modelos Biológicos , Migración Transendotelial y Transepitelial , Animales , Línea Celular , Quimiocinas/farmacología , Citometría de Flujo , Mucosa Intestinal/efectos de los fármacos , Ratones Endogámicos C57BL , Neutrófilos/citología , Permeabilidad , Estándares de Referencia , Migración Transendotelial y Transepitelial/efectos de los fármacos
5.
Mol Biol Cell ; 32(8): 753-768, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33596089

RESUMEN

The role of desmosomal cadherin desmocollin-2 (Dsc2) in regulating barrier function in intestinal epithelial cells (IECs) is not well understood. Here, we report the consequences of silencing Dsc2 on IEC barrier function in vivo using mice with inducible intestinal-epithelial-specific Dsc2 knockdown (KD) (Dsc2ERΔIEC). While the small intestinal gross architecture was maintained, loss of epithelial Dsc2 influenced desmosomal plaque structure, which was smaller in size and had increased intermembrane space between adjacent epithelial cells. Functional analysis revealed that loss of Dsc2 increased intestinal permeability in vivo, supporting a role for Dsc2 in the regulation of intestinal epithelial barrier function. These results were corroborated in model human IECs in which Dsc2 KD resulted in decreased cell-cell adhesion and impaired barrier function. It is noteworthy that Dsc2 KD cells exhibited delayed recruitment of desmoglein-2 (Dsg2) to the plasma membrane after calcium switch-induced intercellular junction reassembly, while E-cadherin accumulation was unaffected. Mechanistically, loss of Dsc2 increased desmoplakin (DP I/II) protein expression and promoted intermediate filament interaction with DP I/II and was associated with enhanced tension on desmosomes as measured by a Dsg2-tension sensor. In conclusion, we provide new insights on Dsc2 regulation of mechanical tension, adhesion, and barrier function in IECs.


Asunto(s)
Adhesión Celular/fisiología , Desmocolinas/metabolismo , Animales , Cadherinas/metabolismo , Línea Celular , Membrana Celular/metabolismo , Desmocolinas/genética , Desmocolinas/fisiología , Desmogleína 2/metabolismo , Cadherinas Desmosómicas/metabolismo , Cadherinas Desmosómicas/fisiología , Desmosomas/metabolismo , Humanos , Uniones Intercelulares/metabolismo , Mucosa Intestinal , Masculino , Ratones , Ratones Noqueados
6.
Mucosal Immunol ; 14(2): 331-341, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32561828

RESUMEN

Dysregulated neutrophil (PMN) transmigration across epithelial surfaces (TEpM) significantly contributes to chronic inflammatory diseases, yet mechanisms defining this process remain poorly understood. In the intestine, uncontrolled PMN TEpM is a hallmark of disease flares in ulcerative colitis. Previous in vitro studies directed at identifying molecular determinants that mediate TEpM have shown that plasma membrane proteins including CD47 and CD11b/CD18 play key roles in regulating PMN TEpM across monolayers of intestinal epithelial cells. Here, we show that CD47 modulates PMN TEpM in vivo using an ileal loop assay. Importantly, using novel tissue-specific CD47 knockout mice and in vitro approaches, we report that PMN-expressed, but not epithelial-expressed CD47 plays a major role in regulating PMN TEpM. We show that CD47 associates with CD11b/CD18 in the plasma membrane of PMN, and that loss of CD47 results in impaired CD11b/CD18 activation. In addition, in vitro and in vivo studies using function blocking antibodies support a role of CD47 in regulating CD11b-dependent PMN TEpM and chemotaxis. Taken together, these findings provide new insights for developing approaches to target dysregulated PMN infiltration in the intestine. Moreover, tissue-specific CD47 knockout mice constitute an important new tool to study contributions of cells expressing CD47 to inflammation in vivo.


Asunto(s)
Antígeno CD47/metabolismo , Inflamación/inmunología , Intestinos/inmunología , Neutrófilos/inmunología , Animales , Antígeno CD11b/metabolismo , Antígenos CD18/metabolismo , Antígeno CD47/genética , Células Cultivadas , Quimiotaxis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Activación Neutrófila , Especificidad de Órganos , Migración Transendotelial y Transepitelial
7.
Mol Biol Cell ; 31(6): 407-418, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31967937

RESUMEN

The intestinal mucosa is lined by a single layer of epithelial cells that forms a tight barrier, separating luminal antigens and microbes from underlying tissue compartments. Mucosal damage results in a compromised epithelial barrier that can lead to excessive immune responses as observed in inflammatory bowel disease. Efficient wound repair is critical to reestablish the mucosal barrier and homeostasis. Intestinal epithelial cells (IEC) exclusively express the desmosomal cadherins, Desmoglein-2 and Desmocollin-2 (Dsc2) that contribute to mucosal homeostasis by strengthening intercellular adhesion between cells. Despite this important property, specific contributions of desmosomal cadherins to intestinal mucosal repair after injury remain poorly investigated in vivo. Here we show that mice with inducible conditional knockdown (KD) of Dsc2 in IEC (Villin-CreERT2; Dsc2 fl/fl) exhibited impaired mucosal repair after biopsy-induced colonic wounding and recovery from dextran sulfate sodium-induced colitis. In vitro analyses using human intestinal cell lines after KD of Dsc2 revealed delayed epithelial cell migration and repair after scratch-wound healing assay that was associated with reduced cell-matrix traction forces, decreased levels of integrin ß1 and ß4, and altered activity of the small GTPase Rap1. Taken together, these results demonstrate that epithelial Dsc2 is a key contributor to intestinal mucosal wound healing in vivo.


Asunto(s)
Movimiento Celular , Desmocolinas/metabolismo , Integrinas/metabolismo , Mucosa Intestinal/patología , Cicatrización de Heridas , Animales , Adhesión Celular , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Enterocitos/metabolismo , Células Epiteliales/metabolismo , Matriz Extracelular/metabolismo , Eliminación de Gen , Humanos , Inflamación/patología , Ratones Endogámicos C57BL , Proteínas de Unión al GTP rap1/metabolismo
8.
Nat Commun ; 10(1): 5004, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31676794

RESUMEN

CD47 is a ubiquitously expressed transmembrane glycoprotein that regulates inflammatory responses and tissue repair. Here, we show that normal mice treated with anti-CD47 antibodies, and Cd47-null mice have impaired intestinal mucosal wound healing. Furthermore, intestinal epithelial cell (IEC)-specific loss of CD47 does not induce spontaneous immune-mediated intestinal barrier disruption but results in defective mucosal repair after biopsy-induced colonic wounding or Dextran Sulfate Sodium (DSS)-induced mucosal damage. In vitro analyses using primary cultures of CD47-deficient murine colonic IEC or human colonoid-derived IEC treated with CD47-blocking antibodies demonstrate impaired epithelial cell migration in wound healing assays. Defective wound repair after CD47 loss is linked to decreased epithelial ß1 integrin and focal adhesion signaling, as well as reduced thrombospondin-1 and TGF-ß1. These results demonstrate a critical role for IEC-expressed CD47 in regulating mucosal repair and raise important considerations for possible alterations in wound healing secondary to therapeutic targeting of CD47.


Asunto(s)
Antígeno CD47/metabolismo , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/fisiopatología , Cicatrización de Heridas/fisiología , Animales , Antígeno CD47/genética , Colitis/inducido químicamente , Colitis/genética , Colitis/metabolismo , Sulfato de Dextran , Modelos Animales de Enfermedad , Humanos , Mucosa Intestinal/patología , Intestinos/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/genética , Trombospondina 1/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Cicatrización de Heridas/genética
9.
Mucosal Immunol ; 12(3): 668-678, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30745566

RESUMEN

Junctional adhesion molecule-A (JAM-A) is a transmembrane glycoprotein expressed on leukocytes, endothelia, and epithelia that regulates biological processes including barrier function and immune responses. While JAM-A has been reported to facilitate tissue infiltration of leukocytes under inflammatory conditions, the contributions of leukocyte-expressed JAM-A in vivo remain unresolved. We investigated the role of leukocyte-expressed JAM-A in acute peritonitis induced by zymosan, lipopolysaccharide (LPS), or TNFα using mice with selective loss of JAM-A in myelomonocytic cells (LysM-Cre;Jam-afl/fl). Surprisingly, in LysM-Cre;Jam-afl/fl mice, loss of JAM-A did not affect neutrophil (PMN) recruitment into the peritoneum in response to zymosan, LPS, or TNFα although it was significantly reduced in Jam-aKO mice. In parallel, Jam-aKO peritoneal macrophages exhibited diminished CXCL1 chemokine production and decreased activation of NF-kB, whereas those from LysM-Cre;Jam-afl/fl mice were unaffected. Using Villin-Cre;Jam-afl/fl mice, targeted loss of JAM-A on intestinal epithelial cells resulted in increased intestinal permeability along with reduced peritoneal PMN migration as well as lower levels of CXCL1 and active NF-kB similar to that observed in Jam-aKO animals. Interestingly, in germ-free Villin-Cre;Jam-afl/fl mice, PMN recruitment was unaffected suggesting dependence on gut microbiota. Such observations highlight the functional link between a leaky gut and regulation of innate immune responses.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Mucosa Intestinal/inmunología , Macrófagos/inmunología , Neutrófilos/inmunología , Peritonitis/inmunología , Receptores de Superficie Celular/metabolismo , Uniones Estrechas/patología , Animales , Moléculas de Adhesión Celular/genética , Células Cultivadas , Quimiocina CXCL1/metabolismo , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , FN-kappa B/metabolismo , Infiltración Neutrófila , Peritonitis/inducido químicamente , Permeabilidad , Receptores de Superficie Celular/genética , Zimosan
10.
Mol Biol Cell ; 30(5): 566-578, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30625033

RESUMEN

Junctional adhesion molecule-A (JAM-A), an epithelial tight junction protein, plays an important role in regulating intestinal permeability through association with a scaffold signaling complex containing ZO-2, Afadin, and the small GTPase Rap2. Under inflammatory conditions, we report that the cytoplasmic tail of JAM-A is tyrosine phosphorylated (p-Y280) in association with loss of barrier function. While barely detectable Y280 phosphorylation was observed in confluent monolayers of human intestinal epithelial cells under basal conditions, exposure to cytokines TNFα, IFNγ, IL-22, or IL-17A, resulted in compromised barrier function in parallel with increased p-Y280. Phosphorylation was Src kinase dependent, and we identified Yes-1 and PTPN13 as a major kinase and phosphatase for p-JAM-A Y280, respectively. Moreover, cytokines IL-22 or IL-17A induced increased activity of Yes-1. Furthermore, the Src kinase inhibitor PP2 rescued cytokine-induced epithelial barrier defects and inhibited phosphorylation of JAM-A Y280 in vitro. Phosphorylation of JAM-A Y280 and increased permeability correlated with reduced JAM-A association with active Rap2. Finally, we observed increased phosphorylation of Y280 in colonic epithelium of individuals with ulcerative colitis and in mice with experimentally induced colitis. These findings support a novel mechanism by which tyrosine phosphorylation of JAM-A Y280 regulates epithelial barrier function during inflammation.


Asunto(s)
Células Epiteliales/metabolismo , Inflamación/patología , Intestinos/patología , Molécula A de Adhesión de Unión/metabolismo , Fosfotirosina/metabolismo , Secuencia de Aminoácidos , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Citocinas/farmacología , Sulfato de Dextran , Células HEK293 , Humanos , Intestinos/química , Ratones Endogámicos C57BL , Modelos Biológicos , Fosforilación/efectos de los fármacos , Proteína Tirosina Fosfatasa no Receptora Tipo 13/metabolismo , Proteínas Proto-Oncogénicas c-yes/metabolismo , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo , Proteínas de Unión al GTP rap/metabolismo
11.
JCI Insight ; 3(20)2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30333307

RESUMEN

Molecular mechanisms that control leukocyte migration across the vascular endothelium (transendothelial migration; TEndoM) have been extensively characterized in vivo, but details of leukocyte transepithelial migration (TEpM) and its dysregulation (a pathologic feature of many mucosal diseases) are missing due to the lack of suitable animal models. Here, we describe a murine model that utilizes a vascularized proximal colonic segment (pcLoop) and enables quantitative studies of leukocyte trafficking across colonic epithelium. Consistent with previous in vitro studies, intraluminal injection of antibodies against integrin CD11b/CD18 reduced recruitment of polymorphonuclear neutrophils (PMN) into the lumen of pcLoops, and it increased subepithelial accumulation of PMN. We extended studies using the pcLoop to determine contributions of Junctional Adhesion Molecule-A (JAM-A, or F11R) in PMN TEpM and confirmed that mice with total loss of JAM-A or mice with intestinal epithelial selective loss of JAM-A had increased colonic permeability. Furthermore, there was reduced PMN migration into the colonic lumen that paralleled subepithelial accumulation of PMN in global-KO mice, as well as in intestinal epithelial-targeted JAM-A-deficient mice. These findings highlight a potentially novel role for JAM-A in regulating PMN TEpM in vivo and demonstrate utility of this model for identifying receptors that may be targeted in vivo to reduce pathologic intestinal inflammation.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Mucosa Intestinal/metabolismo , Neutrófilos/fisiología , Receptores de Superficie Celular/metabolismo , Migración Transendotelial y Transepitelial , Animales , Moléculas de Adhesión Celular/genética , Colon/citología , Colon/metabolismo , Células Epiteliales , Mucosa Intestinal/citología , Ratones , Ratones Noqueados , Modelos Animales , Permeabilidad , Receptores de Superficie Celular/genética
12.
Gastroenterology ; 151(4): 616-32, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27436072

RESUMEN

The intestinal tract is lined by a single layer of columnar epithelial cells that forms a dynamic, permeable barrier allowing for selective absorption of nutrients, while restricting access to pathogens and food-borne antigens. Precise regulation of epithelial barrier function is therefore required for maintaining mucosal homeostasis and depends, in part, on barrier-forming elements within the epithelium and a balance between pro- and anti-inflammatory factors in the mucosa. Pathologic states, such as inflammatory bowel disease, are associated with a leaky epithelial barrier, resulting in excessive exposure to microbial antigens, recruitment of leukocytes, release of soluble mediators, and ultimately mucosal damage. An inflammatory microenvironment affects epithelial barrier properties and mucosal homeostasis by altering the structure and function of epithelial intercellular junctions through direct and indirect mechanisms. We review our current understanding of complex interactions between the intestinal epithelium and immune cells, with a focus on pathologic mucosal inflammation and mechanisms of epithelial repair. We discuss leukocyte-epithelial interactions, as well as inflammatory mediators that affect the epithelial barrier and mucosal repair. Increased knowledge of communication networks between the epithelium and immune system will lead to tissue-specific strategies for treating pathologic intestinal inflammation.


Asunto(s)
Comunicación Celular , Células Epiteliales/fisiología , Uniones Intercelulares/fisiología , Mucosa Intestinal/fisiopatología , Leucocitos/fisiología , Homeostasis , Humanos , Enfermedades Inflamatorias del Intestino/patología , Enfermedades Inflamatorias del Intestino/fisiopatología , Mucosa Intestinal/patología
13.
Mol Biol Cell ; 25(10): 1574-85, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24672055

RESUMEN

Junctional adhesion molecule-A (JAM-A) is a tight junction-associated signaling protein that regulates epithelial cell proliferation, migration, and barrier function. JAM-A dimerization on a common cell surface (in cis) has been shown to regulate cell migration, and evidence suggests that JAM-A may form homodimers between cells (in trans). Indeed, transfection experiments revealed accumulation of JAM-A at sites between transfected cells, which was lost in cells expressing cis- or predicted trans-dimerization null mutants. Of importance, microspheres coated with JAM-A containing alanine substitutions to residues 43NNP45 (NNP-JAM-A) within the predicted trans-dimerization site did not aggregate. In contrast, beads coated with cis-null JAM-A demonstrated enhanced clustering similar to that observed with wild-type (WT) JAM-A. In addition, atomic force microscopy revealed decreased association forces in NNP-JAM-A compared with WT and cis-null JAM-A. Assessment of effects of JAM-A dimerization on cell signaling revealed that expression of trans- but not cis-null JAM-A mutants decreased Rap2 activity. Furthermore, confluent cells, which enable trans-dimerization, had enhanced Rap2 activity. Taken together, these results suggest that trans-dimerization of JAM-A occurs at a unique site and with different affinity compared with dimerization in cis. Trans-dimerization of JAM-A may thus act as a barrier-inducing molecular switch that is activated when cells become confluent.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Multimerización de Proteína/fisiología , Receptores de Superficie Celular/metabolismo , Uniones Estrechas/fisiología , Proteínas de Unión al GTP rap/biosíntesis , Sustitución de Aminoácidos , Animales , Sitios de Unión/genética , Células CHO , Adhesión Celular/fisiología , Moléculas de Adhesión Celular/genética , Agregación Celular/fisiología , Línea Celular , Membrana Celular/metabolismo , Movimiento Celular , Cricetulus , Células HEK293 , Humanos , Uniones Intercelulares/metabolismo , Microscopía de Fuerza Atómica , Mutación , Estructura Terciaria de Proteína , Interferencia de ARN , ARN Interferente Pequeño , Receptores de Superficie Celular/genética , Transducción de Señal , Uniones Estrechas/genética
14.
Semin Immunopathol ; 36(2): 211-26, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24667924

RESUMEN

Mucosal surfaces are lined by epithelial cells that form a physical barrier protecting the body against external noxious substances and pathogens. At a molecular level, the mucosal barrier is regulated by tight junctions (TJs) that seal the paracellular space between adjacent epithelial cells. Transmembrane proteins within TJs include junctional adhesion molecules (JAMs) that belong to the cortical thymocyte marker for Xenopus family of proteins. JAM family encompasses three classical members (JAM-A, JAM-B, and JAM-C) and related molecules including JAM4, JAM-like protein, Coxsackie and adenovirus receptor (CAR), CAR-like membrane protein and endothelial cell-selective adhesion molecule. JAMs have multiple functions that include regulation of endothelial and epithelial paracellular permeability, leukocyte recruitment during inflammation, angiogenesis, cell migration, and proliferation. In this review, we summarize the current knowledge regarding the roles of the JAM family members in the regulation of mucosal homeostasis and leukocyte trafficking with a particular emphasis on barrier function and its perturbation during pathological inflammation.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Homeostasis , Inflamación/inmunología , Inflamación/metabolismo , Membrana Mucosa/inmunología , Membrana Mucosa/metabolismo , Animales , Humanos , Leucocitos/inmunología , Leucocitos/metabolismo , Membrana Mucosa/patología , Migración Transendotelial y Transepitelial
15.
Cancer Res ; 73(9): 2905-15, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23396587

RESUMEN

Metastasis, a fatal complication of breast cancer, does not fully benefit from available therapies. In this study, we investigated whether ATIP3, the major product of 8p22 MTUS1 gene, may be a novel biomarker and therapeutic target for metastatic breast tumors. We show that ATIP3 is a prognostic marker for overall survival among patients with breast cancer. Notably, among metastatic tumors, low ATIP3 levels associate with decreased survival of the patients. By using a well-defined experimental mouse model of cancer metastasis, we show that ATIP3 expression delays the time-course of metastatic progression and limits the number and size of metastases in vivo. In functional studies, ATIP3 silencing increases breast cancer cell migration, whereas ATIP3 expression significantly reduces cell motility and directionality. We report here that ATIP3 is a potent microtubule-stabilizing protein whose depletion increases microtubule dynamics. Our data support the notion that by decreasing microtubule dynamics, ATIP3 controls the ability of microtubule tips to reach the cell cortex during migration, a mechanism that may account for reduced cancer cell motility and metastasis. Of interest, we identify a functional ATIP3 domain that associates with microtubules and recapitulates the effects of ATIP3 on microtubule dynamics, cell proliferation, and migration. Our study is a major step toward the development of new personalized treatments against metastatic breast tumors that have lost ATIP3 expression.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Neoplasias de la Mama/patología , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Humanos , Ratones , Microscopía Fluorescente/métodos , Microtúbulos/metabolismo , Metástasis de la Neoplasia , Análisis de Secuencia por Matrices de Oligonucleótidos , Plásmidos/metabolismo , Pronóstico , Estructura Terciaria de Proteína , Resultado del Tratamiento
16.
Fluids Barriers CNS ; 9(1): 23, 2012 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-23140302

RESUMEN

The Blood-brain barrier (BBB), present at the level of the endothelium of cerebral blood vessels, selectively restricts the blood-to-brain paracellular diffusion of compounds; it is mandatory for cerebral homeostasis and proper neuronal function. The barrier properties of these specialized endothelial cells notably depend on tight junctions (TJs) between adjacent cells: TJs are dynamic structures consisting of a number of transmembrane and membrane-associated cytoplasmic proteins, which are assembled in a multimolecular complex and acting as a platform for intracellular signaling. Although the structural composition of these complexes has been well described in the recent years, our knowledge about their functional regulation still remains fragmentary. Importantly, pericytes, embedded in the vascular basement membrane, and perivascular microglial cells, astrocytes and neurons contribute to the regulation of endothelial TJs and BBB function, altogether constituting the so-called neurovascular unit.The present review summarizes our current understanding of the structure and functional regulation of endothelial TJs at the BBB. Accumulating evidence points to a correlation between BBB dysfunction, alteration of TJ complexes and progression of a variety of CNS diseases, such as stroke, multiple sclerosis and brain tumors, as well as neurodegenerative diseases like Parkinson's and Alzheimer's diseases. Understanding how TJ integrity is controlled may thus help improve drug delivery across the BBB and the design of therapeutic strategies for neurological disorders.

17.
PLoS One ; 7(4): e35667, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22536420

RESUMEN

Breast cancer metastasis is a leading cause of death by malignancy in women worldwide. Efforts are being made to further characterize the rate-limiting steps of cancer metastasis, i.e. extravasation of circulating tumor cells and colonization of secondary organs. In this study, we investigated whether angiotensin II, a major vasoactive peptide both produced locally and released in the bloodstream, may trigger activating signals that contribute to cancer cell extravasation and metastasis. We used an experimental in vivo model of cancer metastasis in which bioluminescent breast tumor cells (D3H2LN) were injected intra-cardiacally into nude mice in order to recapitulate the late and essential steps of metastatic dissemination. Real-time intravital imaging studies revealed that angiotensin II accelerates the formation of metastatic foci at secondary sites. Pre-treatment of cancer cells with the peptide increases the number of mice with metastases, as well as the number and size of metastases per mouse. In vitro, angiotensin II contributes to each sequential step of cancer metastasis by promoting cancer cell adhesion to endothelial cells, trans-endothelial migration and tumor cell migration across extracellular matrix. At the molecular level, a total of 102 genes differentially expressed following angiotensin II pre-treatment were identified by comparative DNA microarray. Angiotensin II regulates two groups of connected genes related to its precursor angiotensinogen. Among those, up-regulated MMP2/MMP9 and ICAM1 stand at the crossroad of a network of genes involved in cell adhesion, migration and invasion. Our data suggest that targeting angiotensin II production or action may represent a valuable therapeutic option to prevent metastatic progression of invasive breast tumors.


Asunto(s)
Angiotensina II/fisiología , Neoplasias Óseas/secundario , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/patología , Neoplasias Pulmonares/secundario , Migración Transendotelial y Transepitelial , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Neoplasias de la Mama/metabolismo , Adhesión Celular/genética , Línea Celular Tumoral , Proliferación Celular , Técnicas de Cocultivo , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Migración Transendotelial y Transepitelial/genética
18.
J Cereb Blood Flow Metab ; 32(5): 860-73, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22333621

RESUMEN

The blood-brain barrier (BBB) selectively controls the exchanges between the blood and the brain: it is formed by tight junctions (TJs) between adjacent microvascular endothelial cells. The transmembrane protein claudin-5 is known as a key TJ protein at the BBB, although, the molecular mechanisms by which it regulates TJ tightness are poorly understood. To identify putative claudin-5 partners that contribute to TJ integrity, claudin-5-enriched membrane microdomains were prepared by cell fractionation, using the human brain endothelial cell line hCMEC/D3 and claudin-5 immunoprecipitates were submitted to tandem mass spectrometry. Because a high concentration of mannitol is known to transiently destabilize TJs, this analysis was performed in basal conditions, after mannitol treatment, and after recovery of TJ integrity. We here demonstrate that the G-protein subunit αi2 (Gαi2) interacts with claudin-5 and that association is correlated with TJ integrity in hCMEC/D3 cells; also, a selective expression of Gαi2 is observed in human brain vasculature in situ. Moreover, small interfering RNA-mediated depletion of Gαi2 or claudin-5 in hCMEC/D3 cells similarly increases their paracellular permeability and delays TJ recovery after mannitol treatment. Altogether, our results identify Gαi2 as a novel claudin-5 partner required for TJ integrity in brain endothelial cells.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Claudinas/metabolismo , Células Endoteliales/metabolismo , Subunidad alfa de la Proteína de Unión al GTP Gi2/metabolismo , Uniones Estrechas/metabolismo , Barrera Hematoencefálica/citología , Línea Celular , Claudina-5 , Claudinas/genética , Células Endoteliales/citología , Subunidad alfa de la Proteína de Unión al GTP Gi2/genética , Técnicas de Silenciamiento del Gen , Humanos , Manitol/química , Microdominios de Membrana/genética , Microdominios de Membrana/metabolismo , Unión Proteica , ARN Interferente Pequeño/genética , Uniones Estrechas/genética
19.
J Cell Biol ; 183(6): 1159-73, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19064666

RESUMEN

Junctional adhesion molecules (JAMs) are endothelial and epithelial adhesion molecules involved in the recruitment of circulating leukocytes to inflammatory sites. We show here that JAM-L, a protein related to the JAM family, is restricted to leukocytes and promotes their adhesion to endothelial cells. Cis dimerization of JAM-L is required to engage in heterophilic interactions with its cognate counter-receptor CAR (coxsackie and adenovirus receptor). Interestingly, JAM-L expressed on neutrophils binds CAR independently of integrin activation. However, on resting monocytes and T lymphocytes, which express the integrin VLA-4, JAM-L molecules engage in complexes with VLA-4 and mainly accumulate in their monomeric form. Integrin activation is required for the dissociation of JAM-L-VLA-4 complexes and the accumulation of functional JAM-L dimers, which indicates that the leukocyte integrin VLA-4 controls JAM-L function in cis by controlling its dimerization state. This provides a mechanism through which VLA-4 and JAM-L functions are coordinately regulated, allowing JAM-L to strengthen integrin-dependent adhesion of leukocytes to endothelial cells.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Integrina alfa4beta1/metabolismo , Leucocitos/citología , Leucocitos/metabolismo , Adhesión Celular , Línea Celular , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus , Dimerización , Humanos , Memoria Inmunológica , Monocitos/citología , Monocitos/metabolismo , Neutrófilos/citología , Neutrófilos/metabolismo , Unión Proteica , Receptores Virales/metabolismo , Linfocitos T/citología , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...