Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Chem Biol ; 19(3): 696-706, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38385342

RESUMEN

The blue-light photoreceptor YtvA from Bacillus subtilis has an N-terminal flavin mononucleotide (FMN)-binding light-oxygen-voltage (LOV) domain that is fused to a C-terminal sulfate transporter and anti-σ factor antagonist (STAS) output domain. To interrogate the signal transduction pathway that leads to photoactivation, the STAS domain was replaced with a histidine kinase, so that photoexcitation of the flavin could be directly correlated with biological activity. N94, a conserved Asn that is hydrogen bonded to the FMN C2═O group, was replaced with Ala, Asp, and Ser residues to explore the role of this residue in triggering the structural dynamics that activate the output domain. Femtosecond to millisecond time-resolved multiple probe spectroscopy coupled with a fluorescence polarization assay revealed that the loss of the hydrogen bond between N94 and the C2═O group decoupled changes in the protein structure from photoexcitation. In addition, alterations in N94 also decreased the stability of the Cys-FMN adduct formed in the light-activated state by up to a factor of ∼25. Collectively, these studies shed light on the role of the hydrogen bonding network in the LOV ß-scaffold in signal transduction.


Asunto(s)
Proteínas Bacterianas , Fotorreceptores Microbianos , Proteínas Bacterianas/metabolismo , Análisis Espectral , Fotorreceptores Microbianos/química , Bacillus subtilis/metabolismo , Mononucleótido de Flavina/metabolismo
2.
J Mol Biol ; 436(5): 168312, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37827329

RESUMEN

Photoactivated adenylate cyclases (PACs) are light-activated enzymes that combine a BLUF (blue-light using flavin) domain and an adenylate cyclase domain that are able to increase the levels of the important second messenger cAMP (cyclic adenosine monophosphate) upon blue-light excitation. The light-induced changes in the BLUF domain are transduced to the adenylate cyclase domain via a mechanism that has not yet been established. One critical residue in the photoactivation mechanism of BLUF domains, present in the vicinity of the flavin is the glutamine amino acid close to the N5 of the flavin. The role of this residue has been investigated extensively both experimentally and theoretically. However, its role in the activity of the photoactivated adenylate cyclase, OaPAC has never been addressed. In this work, we applied ultrafast transient visible and infrared spectroscopies to study the photochemistry of the Q48E OaPAC mutant. This mutation altered the primary electron transfer process and switched the enzyme into a permanent 'on' state, able to increase the cAMP levels under dark conditions compared to the cAMP levels of the dark-adapted state of the wild-type OaPAC. Differential scanning calorimetry measurements point to a less compact structure for the Q48E OaPAC mutant. The ensemble of these findings provide insight into the important elements in PACs and how their fine tuning may help in the design of optogenetic devices.


Asunto(s)
Adenilil Ciclasas , Proteínas Bacterianas , Glutamina , Oscillatoria , Adenilil Ciclasas/química , Adenilil Ciclasas/genética , Adenilil Ciclasas/efectos de la radiación , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/efectos de la radiación , Flavinas/química , Flavinas/efectos de la radiación , Luz , Mutación , Glutamina/genética , Dominios Proteicos/efectos de los fármacos , Transporte de Electrón , Activación Enzimática/efectos de la radiación , Oscillatoria/enzimología
3.
Diagnostics (Basel) ; 13(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37568886

RESUMEN

To study the effect of non-ionic contrast media on anticoagulated and non-anticoagulated human whole blood samples, calorimetric measurements were performed. The anticoagulated plasma showed the greatest fall in the total ΔH after Iodixanol treatment. The plasma-free erythrocytes revealed a pronounced shift in the Tmax and a decrease in the ΔH of hemoglobin and transferrin. The total ΔH of Iodixanol treatment showed the highest decline, while Iomeprol and Iobitridol had fewer adverse effects. Similarly, the non-anticoagulated samples revealed a decrease both in the Tmax and the ΔH of albumin and immunoglobulin-specific transitions. The total ΔH showed that Iodixanol had more influence on the serum. The serum-free erythrocyte samples resulted in a significant drop in the Tmax of erythrocyte and transferrin (~5-6 °C). The ΔH of deconvolved hemoglobin and transferrin decreased considerably; however, the ΔH of albumin increased. Surprisingly, compared to Iomeprol and Iobitridol treatments, the total ΔH of Iodixanol was less pronounced in the non-anticoagulated erythrocyte samples. In sum, each non-ionic contrast medium affected the thermal stability of anticoagulated and non-anticoagulated erythrocyte proteins. Interestingly, Iodixanol treatment caused more significant effects. These findings suggest that conformational changes in blood components can occur, which can potentially lead to the increased prevalence of cardiovascular dysfunctions and blood clotting.

4.
J Biol Chem ; 299(8): 105056, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37468104

RESUMEN

Photoactivated adenylate cyclases (PACs) are light activated enzymes that combine blue light sensing capacity with the ability to convert ATP to cAMP and pyrophosphate (PPi) in a light-dependent manner. In most of the known PACs blue light regulation is provided by a blue light sensing domain using flavin which undergoes a structural reorganization after blue-light absorption. This minor structural change then is translated toward the C-terminal of the protein, inducing a larger conformational change that results in the ATP conversion to cAMP. As cAMP is a key second messenger in numerous signal transduction pathways regulating various cellular functions, PACs are of great interest in optogenetic studies. The optimal optogenetic device must be "silent" in the dark and highly responsive upon light illumination. PAC from Oscillatoria acuminata is a very good candidate as its basal activity is very small in the dark and the conversion rates increase 20-fold upon light illumination. We studied the effect of replacing D67 to N, in the blue light using flavin domain. This mutation was found to accelerate the primary electron transfer process in the photosensing domain of the protein, as has been predicted. Furthermore, it resulted in a longer lived signaling state, which was formed with a lower quantum yield. Our studies show that the overall effects of the D67N mutation lead to a slightly higher conversion of ATP to cAMP, which points in the direction that by fine tuning the kinetic properties more responsive PACs and optogenetic devices can be generated.


Asunto(s)
Adenilil Ciclasas , Proteínas Bacterianas , Oscillatoria , Adenosina Trifosfato , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Flavinas/metabolismo , Luz , Sistemas de Mensajero Secundario , Oscillatoria/enzimología
5.
Int J Mol Sci ; 23(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36555681

RESUMEN

The basis of MreB research is the study of the MreB protein from the Thermotoga maritima species, since it was the first one whose crystal structure was described. Since MreB proteins from different bacterial species show different polymerisation properties in terms of nucleotide and salt dependence, we conducted our research in this direction. For this, we performed measurements based on tryptophan emission, which were supplemented with temperature-dependent and chemical denaturation experiments. The role of nucleotide binding was studied through the fluorescent analogue TNP-ATP. These experiments show that Thermotoga maritima MreB is stabilised in the presence of low salt buffer and ATP. In the course of our work, we developed a new expression and purification procedure that allows us to obtain a large amount of pure, functional protein.


Asunto(s)
Actinas , Thermotoga maritima , Actinas/metabolismo , Thermotoga maritima/metabolismo , Proteínas Bacterianas/metabolismo , Solubilidad , Nucleótidos/metabolismo
6.
Int J Mol Sci ; 23(22)2022 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-36430492

RESUMEN

Human serum albumin (HSA) is the most abundant plasma protein in circulation. The three most important drug-binding sites on HSA are Sudlow's Site I (subdomain IIA), Sudlow's Site II (subdomain IIIA), and Heme site (subdomain IB). Heme site and Site I are allosterically coupled; therefore, their ligands may be able to allosterically modulate the binding affinity of each other. In this study, the effects of four Heme site ligands (bilirubin, biliverdin, hemin, and methyl orange) on the interaction of the Site I ligand warfarin with HSA were tested, employing fluorescence spectroscopic, ultrafiltration, and ultracentrifugation studies. Our major results/conclusions are the following. (1) Quenching studies indicated no relevant interaction, while the other fluorescent model used suggested that each Heme site ligand strongly decreases the albumin binding of warfarin. (2) Ultrafiltration and ultracentrifugation studies demonstrated the complex modulation of warfarin-HSA interaction by the different Heme site markers; for example, bilirubin strongly decreased while methyl orange considerably increased the bound fraction of warfarin. (3) Fluorescence spectroscopic studies showed misleading results in these diligand-albumin interactions. (4) Different Heme site ligands can increase or decrease the albumin binding of warfarin and the outcome can even be concentration dependent (e.g., biliverdin and hemin).


Asunto(s)
Biliverdina , Warfarina , Humanos , Warfarina/farmacología , Hemo/metabolismo , Hemina , Bilirrubina , Ligandos , Albúmina Sérica/metabolismo
7.
Polymers (Basel) ; 14(21)2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36365482

RESUMEN

Class II malocclusion is one of the most common dental anomalies and the use of intermaxillary elastomers is the standard method in its treatment. However, orthodontic elastics cannot exert continuous force over a period of time due to force degradation. Our goal was to mechanically characterize the different types of elastomers during static and cyclic loads, based on uniform methodology and examine the morphological changes after loading. Ten types of latex-containing and four latex-free intermaxillary elastics were examined from six different manufacturers. To determine the mechanical characteristics of the elastomers, tensile tests, cyclical tensile fatigue tests and 24 h relaxation tests were performed, and the elastics were also subjected to scanning electron microscopy (SEM) and Raman spectroscopy. Regardless of the manufacturer, the latex-containing elastomers did not show significant differences in the percentage of elongation at break during the tensile test. Only one type of latex-containing elastomer did not tear during the 24 h cyclical fatigue test. Fatigue was confirmed by electron microscopy images, and the pulling force reduced significantly. During the force relaxation test, only one latex-free ligature was torn; the force degradation was between 7.8% and 20.3% for latex ligatures and between 29.6% and 40.1% for latex-free elastomers. The results showed that dynamic loading was more damaging to ligatures than static loading, latex-containing elastomers were more resistant than latex-free elastics, and which observation could have clinical consequences or a potential effect on patient outcome.

8.
ACS Chem Biol ; 17(9): 2643-2654, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36038143

RESUMEN

The hydrogen bonding network that surrounds the flavin in blue light using flavin adenine dinucleotide (BLUF) photoreceptors plays a crucial role in sensing and communicating the changes in the electronic structure of the flavin to the protein matrix upon light absorption. Using time-resolved infrared spectroscopy (TRIR) and unnatural amino acid incorporation, we investigated the photoactivation mechanism and the role of the conserved tyrosine (Y6) in the forward reaction of the photoactivated adenylyl cyclase from Oscillatoria acuminata (OaPAC). Our work elucidates the direct connection between BLUF photoactivation and the structural and functional implications on the partner protein for the first time. The TRIR results demonstrate the formation of the neutral flavin radical as an intermediate species on the photoactivation pathway which decays to form the signaling state. Using fluorotyrosine analogues to modulate the physical properties of Y6, the TRIR data reveal that a change in the pKa and/or reduction potential of Y6 has a profound effect on the forward reaction, consistent with a mechanism involving proton transfer or proton-coupled electron transfer from Y6 to the electronically excited FAD. Decreasing the pKa from 9.9 to <7.2 and/or increasing the reduction potential by 200 mV of Y6 prevents proton transfer to the flavin and halts the photocycle at FAD•-. The lack of protonation of the anionic flavin radical can be directly linked to photoactivation of the adenylyl cyclase (AC) domain. While the 3F-Y6 and 2,3-F2Y6 variants undergo the complete photocycle and catalyze the conversion of ATP into cAMP, enzyme activity is abolished in the 3,5-F2Y6 and 2,3,5-F3Y6 variants where the photocycle is halted at FAD•-. Our results thus show that proton transfer plays an essential role in initiating the structural reorganization of the AC domain that results in AC activity.


Asunto(s)
Adenilil Ciclasas , Flavina-Adenina Dinucleótido , Adenosina Trifosfato , Adenilil Ciclasas/genética , Aminoácidos , Proteínas Bacterianas/metabolismo , Flavina-Adenina Dinucleótido/química , Flavinas/química , Luz , Mutagénesis , Protones , Análisis Espectral , Tirosina
9.
Int J Mol Sci ; 23(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35682873

RESUMEN

SARS-CoV-2 infections are responsible for the COVID-19 pandemic. Transferrin has been found to explain the link between diseases associated with impaired iron transport and COVID-19 infection. The effect of SARS-CoV-2 on human whole blood was studied by differential scanning calorimetry. The analysis of the thermal transition curves showed that the melting temperature of the transferrin-related peak decreased in the presence of SARS-CoV-2. The ratio of the under-curve area of the two main peaks was greatly affected, while the total enthalpy of the heat denaturation remained nearly unchanged in the presence of the virus. These results indicate that SARS-CoV-2, through binding to transferrin, may influence its Fe3+ uptake by inducing thermodynamic changes. Therefore, transferrin may remain in an iron-free apo-conformational state, which depends on the SARS-CoV-2 concentration. SARS-CoV-2 can induce disturbance in erythropoiesis due to toxicity generated by free iron overload.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/complicaciones , Humanos , Hierro/metabolismo , Pandemias , Transferrina/química
10.
Biophys J ; 121(11): 2135-2151, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35488435

RESUMEN

Heme has been shown to have a crucial role in the signal transduction mechanism of the facultative photoheterotrophic bacterium Rhodobacter sphaeroides. It interacts with the transcriptional regulatory complex AppA/PpsR, in which AppA and PpsR function as the antirepressor and repressor, respectively, of photosynthesis gene expression. The mechanism, however, of this interaction remains incompletely understood. In this study, we combined electron paramagnetic resonance (EPR) spectroscopy and Förster resonance energy transfer (FRET) to demonstrate the ligation of heme in PpsR with a proposed cysteine residue. We show that heme binding in AppA affects the fluorescent properties of the dark-adapted state of the protein, suggesting a less constrained flavin environment compared with the absence of heme and the light-adapted state. We performed ultrafast transient absorption measurements in order to reveal potential differences in the dynamic processes in the full-length AppA and its heme-binding domain alone. Comparison of the CO-binding dynamics demonstrates a more open heme pocket in the holo-protein, qualitatively similar to what has been observed in the CO sensor RcoM-2, and suggests a communication path between the blue-light-using flavin (BLUF) and sensing containing heme instead of cobalamin (SCHIC) domains of AppA. We have also examined quantitatively the affinity of PpsR to bind to individual DNA fragments of the puc promoter using fluorescence anisotropy assays. We conclude that oligomerization of PpsR is initially triggered by binding of one of the two DNA fragments and observe a ∼10-fold increase in the dissociation constant Kd for DNA binding upon heme binding to PpsR. Our study provides significant new insight at the molecular level on the regulatory role of heme that modulates the complex transcriptional regulation in R. sphaeroides and supports the two levels of heme signaling, via its binding to AppA and PpsR and via the sensing of gases like oxygen.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Rhodobacter sphaeroides , Proteínas Bacterianas/metabolismo , Fosfatos de Dinucleósidos , Flavinas/genética , Flavinas/metabolismo , Flavoproteínas , Hemo/metabolismo , Proteínas Represoras/metabolismo , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo
11.
J Phys Chem Lett ; 13(5): 1194-1202, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35085441

RESUMEN

RsEGFP2 is a reversibly photoswitchable fluorescent protein used in super-resolved optical microscopies, which can be toggled between a fluorescent On state and a nonfluorescent Off state. Previous time-resolved ultraviolet-visible spectroscopic studies have shown that the Off-to-On photoactivation extends over the femto- to millisecond time scale and involves two picosecond lifetime excited states and four ground state intermediates, reflecting a trans-to-cis excited state isomerization, a millisecond deprotonation, and protein structural reorganizations. Femto- to millisecond time-resolved multiple-probe infrared spectroscopy (TRMPS-IR) can reveal structural aspects of intermediate species. Here we apply TRMPS-IR to rsEGFP2 and implement a Savitzky-Golay derivative analysis to correct for baseline drift. The results reveal that a subpicosecond twisted excited state precursor controls the trans-to-cis isomerization and the chromophore reaches its final position in the protein pocket within 100 ps. A new step with a time constant of 42 ns is reported and assigned to structural relaxation of the protein that occurs prior to the deprotonation of the chromophore on the millisecond time scale.


Asunto(s)
Proteínas Luminiscentes/química , Compuestos de Bencilideno/química , Compuestos de Bencilideno/efectos de la radiación , Imidazoles/química , Imidazoles/efectos de la radiación , Isomerismo , Proteínas Luminiscentes/efectos de la radiación , Conformación Proteica , Espectrofotometría Infrarroja
12.
Acc Chem Res ; 55(3): 402-414, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35016505

RESUMEN

Light activated proteins are at the heart of photobiology and optogenetics, so there is wide interest in understanding the mechanisms coupling optical excitation to protein function. In addition, such light activated proteins provide unique insights into the real-time dynamics of protein function. Using pump-probe spectroscopy, the function of a photoactive protein can be initiated by a sub-100 fs pulse of light, allowing subsequent protein dynamics to be probed from femtoseconds to milliseconds and beyond. Among the most interesting photoactive proteins are the blue light using flavin (BLUF) domain proteins, which regulate the response to light of a wide range of bacterial and some euglenoid processes. The photosensing mechanism of BLUF domains has long been a subject of debate. In contrast to other photoactive proteins, the electronic and nuclear structure of the chromophore (flavin) is the same in dark- and light-adapted states. Thus, the driving force for photoactivity is unclear.To address this question requires real-time observation of both chromophore excited state processes and their effect on the structure and dynamics of the surrounding protein matrix. In this Account we describe how time-resolved infrared (IR) experiments, coupled with chemical biology, provide important new insights into the signaling mechanism of BLUF domains. IR measurements are sensitive to changes in both chromophore electronic structure and protein hydrogen bonding interactions. These contributions are resolved by isotope labeling of the chromophore and protein separately. Further, a degree of control over BLUF photochemistry is achieved through mutagenesis, while unnatural amino acid substitution allows us to both fine-tune the photochemistry and time resolve protein dynamics with spatial resolution.Ultrafast studies of BLUF domains reveal non-single-exponential relaxation of the flavin excited state. That relaxation leads within one nanosecond to the original flavin ground state bound in a modified hydrogen-bonding network, as seen in transient and steady-state IR spectroscopy. The change in H-bond configuration arises from formation of an unusual enol (imine) form of a critical glutamine residue. The dynamics observed, complemented by quantum mechanical calculations, suggest a unique sequential electron then double proton transfer reaction as the driving force, followed by rapid reorganization in the binding site and charge recombination. Importantly, studies of several BLUF domains reveal an unexpected diversity in their dynamics, although the underlying structure appears highly conserved. It is suggested that this diversity reflects structural dynamics in the ground state at standard temperature, leading to a distribution of structures and photochemical outcomes. Time resolved IR measurements were extended to the millisecond regime for one BLUF domain, revealing signaling state formation on the microsecond time scale. The mechanism involves reorganization of a ß-sheet connected to the chromophore binding pocket via a tryptophan residue. The potential of site-specific labeling amino acids with IR labels as a tool for probing protein structural dynamics was demonstrated.In summary, time-resolved IR studies of BLUF domains (along with related studies at visible wavelengths and quantum and molecular dynamics calculations) have resolved the photoactivation mechanism and real-time dynamics of signaling state formation. These measurements provide new insights into protein structural dynamics and will be important in optimizing the potential of BLUF domains in optobiology.


Asunto(s)
Proteínas Bacterianas , Flavinas , Proteínas Bacterianas/química , Transporte de Electrón , Flavinas/química , Enlace de Hidrógeno , Estructura Terciaria de Proteína
13.
J Phys Chem A ; 125(28): 6171-6179, 2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34240863

RESUMEN

Blue light absorbing flavoproteins play important roles in a variety of photobiological processes. Consequently, there have been numerous investigations of their excited state structure and dynamics, in particular by time-resolved vibrational spectroscopy. The isoalloxazine chromophore of the flavoprotein cofactors has been studied in detail by time-resolved Raman, lending it a benchmark status for mode assignments in excited electronic states of large molecules. However, detailed comparisons of calculated and measured spectra have proven challenging, as there are many more modes calculated than are observed, and the role of resonance enhancement is difficult to characterize in excited electronic states. Here we employ a recently developed approach due to Elles and co-workers ( J. Phys. Chem. A 2018, 122, 8308-8319) for the calculation of resonance-enhanced Raman spectra of excited states and apply it to the lowest singlet and triplet excited states of the isoalloxazine chromophore. There is generally good agreement between calculated and observed enhancements, which allows assignment of vibrational bands of the flavoprotein cofactors to be refined. However, some prominently enhanced bands are found to be absent from the calculations, suggesting the need for further development of the theory.

14.
J Biol Chem ; 297(1): 100716, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33930467

RESUMEN

The lesser-known unconventional myosin 16 protein is essential in proper neuronal functioning and has been implicated in cell cycle regulation. Its longer Myo16b isoform contains a C-terminal tail extension (Myo16Tail), which has been shown to play a role in the neuronal phosphoinositide 3-kinase signaling pathway. Myo16Tail mediates the actin cytoskeleton remodeling, downregulates the actin dynamics at the postsynaptic site of dendritic spines, and is involved in the organization of the presynaptic axon terminals. However, the functional and structural features of this C-terminal tail extension are not well known. Here, we report the purification and biophysical characterization of the Myo16Tail by bioinformatics, fluorescence spectroscopy, and CD. Our results revealed that the Myo16Tail is functionally active and interacts with the N-terminal ankyrin domain of myosin 16, suggesting an intramolecular binding between the C and N termini of Myo16 as an autoregulatory mechanism involving backfolding of the motor domain. In addition, the Myo16Tail possesses high structural flexibility and a solvent-exposed hydrophobic core, indicating the largely unstructured, intrinsically disordered nature of this protein region. Some secondary structure elements were also observed, indicating that the Myo16Tail likely adopts a molten globule-like structure. These structural features imply that the Myo16Tail may function as a flexible display site particularly relevant in post-translational modifications, regulatory functions such as backfolding, and phosphoinositide 3-kinase signaling.


Asunto(s)
Ancirinas/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Miosinas/química , Miosinas/metabolismo , Secuencia de Aminoácidos , Animales , Simulación por Computador , Interacciones Hidrofóbicas e Hidrofílicas , Unión Proteica , Dominios Proteicos , Pliegue de Proteína , Estructura Secundaria de Proteína , Ratas , Espectrometría de Fluorescencia , Triptófano/metabolismo
15.
Photochem Photobiol Sci ; 20(3): 369-378, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33721272

RESUMEN

Tryptophan and tyrosine radical intermediates play crucial roles in many biological charge transfer processes. Particularly in flavoprotein photochemistry, short-lived reaction intermediates can be studied by the complementary techniques of ultrafast visible and infrared spectroscopy. The spectral properties of tryptophan radical are well established, and the formation of neutral tyrosine radicals has been observed in many biological processes. However, only recently, the formation of a cation tyrosine radical was observed by transient visible spectroscopy in a few systems. Here, we assigned the infrared vibrational markers of the cationic and neutral tyrosine radical at 1483 and 1502 cm-1 (in deuterated buffer), respectively, in a variant of the bacterial methyl transferase TrmFO, and in the native glucose oxidase. In addition, we studied a mutant of AppABLUF blue-light sensor domain from Rhodobacter sphaeroides in which only a direct formation of the neutral radical was observed. Our studies highlight the exquisite sensitivity of transient infrared spectroscopy to low concentrations of specific radicals.


Asunto(s)
Flavoproteínas/química , Radicales Libres/química , Espectrofotometría Infrarroja , Tirosina/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cationes/química , Flavoproteínas/metabolismo , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Metiltransferasas/química , Metiltransferasas/genética , Metiltransferasas/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Rhodobacter sphaeroides/metabolismo
16.
ACS Chem Biol ; 15(10): 2752-2765, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32880430

RESUMEN

Light-activated protein domains provide a convenient, modular, and genetically encodable sensor for optogenetics and optobiology. Although these domains have now been deployed in numerous systems, the precise mechanism of photoactivation and the accompanying structural dynamics that modulate output domain activity remain to be fully elucidated. In the C-terminal light-oxygen-voltage (LOV) domain of plant phototropins (LOV2), blue light activation leads to formation of an adduct between a conserved Cys residue and the embedded FMN chromophore, rotation of a conserved Gln (Q513), and unfolding of a helix (Jα-helix) which is coupled to the output domain. In the present work, we focus on the allosteric pathways leading to Jα helix unfolding in Avena sativa LOV2 (AsLOV2) using an interdisciplinary approach involving molecular dynamics simulations extending to 7 µs, time-resolved infrared spectroscopy, solution NMR spectroscopy, and in-cell optogenetic experiments. In the dark state, the side chain of N414 is hydrogen bonded to the backbone N-H of Q513. The simulations predict a lever-like motion of Q513 after Cys adduct formation resulting in a loss of the interaction between the side chain of N414 and the backbone C═O of Q513, and formation of a transient hydrogen bond between the Q513 and N414 side chains. The central role of N414 in signal transduction was evaluated by site-directed mutagenesis supporting a direct link between Jα helix unfolding dynamics and the cellular function of the Zdk2-AsLOV2 optogenetic construct. Through this multifaceted approach, we show that Q513 and N414 are critical mediators of protein structural dynamics, linking the ultrafast (sub-ps) excitation of the FMN chromophore to the microsecond conformational changes that result in photoreceptor activation and biological function.


Asunto(s)
Avena/química , Glutamina/química , Fototropinas/metabolismo , Desplegamiento Proteico/efectos de la radiación , Mononucleótido de Flavina/metabolismo , Enlace de Hidrógeno , Luz , Proteínas de la Membrana/metabolismo , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Mutación , Optogenética , Fototropinas/genética , Fototropinas/efectos de la radiación , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios Proteicos , Multimerización de Proteína/efectos de la radiación
17.
J Phys Chem B ; 124(33): 7152-7165, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32786715

RESUMEN

Flavoproteins are important blue light sensors in photobiology and play a key role in optogenetics. The characterization of their excited state structure and dynamics is thus an important objective. Here, we present a detailed study of excited state vibrational spectra of flavin mononucleotide (FMN), in solution and bound to the LOV-2 (Light-Oxygen-Voltage) domain of Avena sativa phototropin. Vibrational frequencies are determined for the optically excited singlet state and the reactive triplet state, through resonant ultrafast femtosecond stimulated Raman spectroscopy (FSRS). To assign the observed spectra, vibrational frequencies of the excited states are calculated using density functional theory, and both measurement and theory are applied to four different isotopologues of FMN. Excited state mode assignments are refined in both states, and their sensitivity to deuteration and protein environment are investigated. We show that resonant FSRS provides a useful tool for characterizing photoactive flavoproteins and is able to highlight chromophore localized modes and to record hydrogen/deuterium exchange.


Asunto(s)
Mononucleótido de Flavina , Vibración , Criptocromos , Luz , Oxígeno , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral
18.
Sci Rep ; 10(1): 2061, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-32029866

RESUMEN

Blue Light Using Flavin (BLUF) domains are increasingly being adopted for use in optogenetic constructs. Despite this, much remains to be resolved on the mechanism of their activation. The advent of unnatural amino acid mutagenesis opens up a new toolbox for the study of protein structural dynamics. The tryptophan analogue, 7-aza-Trp (7AW) was incorporated in the BLUF domain of the Activation of Photopigment and pucA (AppA) photoreceptor in order to investigate the functional dynamics of the crucial W104 residue during photoactivation of the protein. The 7-aza modification to Trp makes selective excitation possible using 310 nm excitation and 380 nm emission, separating the signals of interest from other Trp and Tyr residues. We used Förster energy transfer (FRET) between 7AW and the flavin to estimate the distance between Trp and flavin in both the light- and dark-adapted states in solution. Nanosecond fluorescence anisotropy decay and picosecond fluorescence lifetime measurements for the flavin revealed a rather dynamic picture for the tryptophan residue. In the dark-adapted state, the major population of W104 is pointing away from the flavin and can move freely, in contrast to previous results reported in the literature. Upon blue-light excitation, the dominant tryptophan population is reorganized, moves closer to the flavin occupying a rigidly bound state participating in the hydrogen-bond network around the flavin molecule.


Asunto(s)
Proteínas Bacterianas/metabolismo , Flavinas/metabolismo , Flavoproteínas/metabolismo , Luz , Fotorreceptores Microbianos/metabolismo , Triptófano/análogos & derivados , Proteínas Bacterianas/química , Proteínas Bacterianas/efectos de la radiación , Flavinas/química , Flavinas/efectos de la radiación , Flavoproteínas/química , Flavoproteínas/efectos de la radiación , Transferencia Resonante de Energía de Fluorescencia , Enlace de Hidrógeno/efectos de la radiación , Conformación Molecular , Simulación de Dinámica Molecular , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/efectos de la radiación , Triptófano/química , Triptófano/metabolismo , Triptófano/efectos de la radiación
19.
J Phys Chem B ; 123(45): 9592-9597, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31596584

RESUMEN

Real-time observation of structure changes associated with protein function remains a major challenge. Ultrafast pump-probe methods record dynamics in light activated proteins, but the assignment of spectroscopic observables to specific structure changes can be difficult. The BLUF (blue light using flavin) domain proteins are an important class of light sensing flavoprotein. Here, we incorporate the unnatural amino acid (UAA) azidophenylalanine (AzPhe) at key positions in the H-bonding environment of the isoalloxazine chromophore of two BLUF domains, namely, PixD and AppABLUF; both proteins retain the red-shift on irradiation characteristic of photoactivity. Steady state and ultrafast time resolved infrared difference measurements of the azido mode reveal site-specific information on the nature and dynamics of light driven structure change. AzPhe dynamics are thus shown to be an effective probe of BLUF domain photoactivation, revealing significant differences between the two proteins and a differential response of the two sites to chromophore excitation.


Asunto(s)
Azidas/química , Flavoproteínas/química , Sondas Moleculares/química , Fenilalanina/análogos & derivados , Sustitución de Aminoácidos , Aminoácidos/química , Flavinas/química , Flavoproteínas/genética , Flavoproteínas/efectos de la radiación , Enlace de Hidrógeno , Luz , Mutación , Fenilalanina/química , Conformación Proteica/efectos de la radiación , Dominios Proteicos/efectos de la radiación , Estructura Terciaria de Proteína/efectos de la radiación , Espectrofotometría Infrarroja
20.
Chemphyschem ; 20(14): 1793-1798, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31081986

RESUMEN

Glucose oxidase is a flavoprotein that is relatively well-studied as a physico-chemical model system. The flavin cofactor is surrounded by several aromatic acid residues that can act as direct and indirect electron donors to photoexcited flavin. Yet, the identity of the photochemical product states is not well established. We present a detailed full spectral reinvestigation of this issue using femtosecond fluorescence and absorption spectroscopy. Based on a recent characterization of the unstable tyrosine cation radical TyrOH•+ , we now propose that the primary photoproduct involves this species, which was previously not considered. Formation of this product is followed by competing charge recombination and radical pair stabilization reactions that involve proton transfer and radical transfer to tryptophan. A minimal kinetic model is proposed, including a fraction of TyrOH.+ that is stabilized up to the tens of picoseconds timescale, suggesting a potential role of this species as intermediate in biochemical electron transfer reactions.


Asunto(s)
Radicales Libres/química , Glucosa Oxidasa/química , Glucosa Oxidasa/efectos de la radiación , Aspergillus niger/enzimología , Flavina-Adenina Dinucleótido/química , Flavina-Adenina Dinucleótido/efectos de la radiación , Proteínas Fúngicas/química , Proteínas Fúngicas/efectos de la radiación , Cinética , Luz , Fotoquímica/métodos , Espectrometría de Fluorescencia/métodos , Tirosina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...