Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(43): e2208672119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36256821

RESUMEN

Recent studies have identified serotonylation of glutamine-5 on histone H3 (H3Q5ser) as a novel posttranslational modification (PTM) associated with active transcription. While H3Q5ser is known to be installed by tissue transglutaminase 2 (TGM2), the substrate characteristics affecting deposition of the mark, at the level of both chromatin and individual nucleosomes, remain poorly understood. Here, we show that histone serotonylation is excluded from constitutive heterochromatic regions in mammalian cells. Biochemical studies reveal that the formation of higher-order chromatin structures associated with heterochromatin impose a steric barrier that is refractory to TGM2-mediated histone monoaminylation. A series of structure-activity relationship studies, including the use of DNA-barcoded nucleosome libraries, shows that steric hindrance also steers TGM2 activity at the nucleosome level, restricting monoaminylation to accessible sites within histone tails. Collectively, our data indicate that the activity of TGM2 on chromatin is dictated by substrate accessibility rather than by primary sequence determinants or by the existence of preexisting PTMs, as is the case for many other histone-modifying enzymes.


Asunto(s)
Histonas , Nucleosomas , Animales , Histonas/genética , Histonas/química , Glutamina , Heterocromatina , Proteína Glutamina Gamma Glutamiltransferasa 2 , Cromatina/genética , ADN/química , Mamíferos
2.
ACS Cent Sci ; 8(2): 176-183, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35233450

RESUMEN

Nucleosomes frequently exist as asymmetric species in native chromatin contexts. Current methods for the traceless generation of these heterotypic chromatin substrates are inefficient and/or difficult to implement. Here, we report an application of the SpyCatcher/SpyTag system as a convenient route to assemble desymmetrized nucleoprotein complexes. This genetically encoded covalent tethering system serves as an internal chaperone, maintained through the assembly process, affording traceless asymmetric nucleosomes following proteolytic removal of the tethers. The strategy allows for generation of nucleosomes containing asymmetric modifications on single or multiple histones, thereby providing facile access to a range of substrates. Herein, we use such constructs to interrogate how nucleosome desymmetrization caused by the incorporation of cancer-associated histone mutations alters chromatin remodeling processes. We also establish that our system provides access to asymmetric dinucleosomes, which allowed us to query the geometric/symmetry constraints of the unmodified histone H3 tail in stimulating the activity of the histone lysine demethylase, KDM5B. By providing a streamlined approach to generate these sophisticated substrates, our method expands the chemical biology toolbox available for interrogating the consequences of asymmetry on chromatin structure and function.

3.
Nature ; 567(7749): 535-539, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30867594

RESUMEN

Chemical modifications of histones can mediate diverse DNA-templated processes, including gene transcription1-3. Here we provide evidence for a class of histone post-translational modification, serotonylation of glutamine, which occurs at position 5 (Q5ser) on histone H3 in organisms that produce serotonin (also known as 5-hydroxytryptamine (5-HT)). We demonstrate that tissue transglutaminase 2 can serotonylate histone H3 tri-methylated lysine 4 (H3K4me3)-marked nucleosomes, resulting in the presence of combinatorial H3K4me3Q5ser in vivo. H3K4me3Q5ser displays a ubiquitous pattern of tissue expression in mammals, with enrichment observed in brain and gut, two organ systems responsible for the bulk of 5-HT production. Genome-wide analyses of human serotonergic neurons, developing mouse brain and cultured serotonergic cells indicate that H3K4me3Q5ser nucleosomes are enriched in euchromatin, are sensitive to cellular differentiation and correlate with permissive gene expression, phenomena that are linked to the potentiation of TFIID4-6 interactions with H3K4me3. Cells that ectopically express a H3 mutant that cannot be serotonylated display significantly altered expression of H3K4me3Q5ser-target loci, which leads to deficits in differentiation. Taken together, these data identify a direct role for 5-HT, independent from its contributions to neurotransmission and cellular signalling, in the mediation of permissive gene expression.


Asunto(s)
Regulación de la Expresión Génica , Histonas/química , Histonas/metabolismo , Lisina/metabolismo , Procesamiento Proteico-Postraduccional , Serotonina/metabolismo , Factor de Transcripción TFIID/metabolismo , Animales , Diferenciación Celular , Línea Celular , Femenino , Proteínas de Unión al GTP/metabolismo , Glutamina/química , Glutamina/metabolismo , Humanos , Metilación , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Proteína Glutamina Gamma Glutamiltransferasa 2 , Neuronas Serotoninérgicas/citología , Transglutaminasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...