Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Theory Comput ; 16(1): 677-687, 2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31755710

RESUMEN

Overbinding of ions is a common and well-known problem in classical molecular dynamics simulations. One of its main causes is the absence of electronic polarizability in the force fields. The current approaches for minimizing overbinding typically either retain the original charges and use an ad hoc readjustment of the Lennard-Jones parameters as done in the nonbonded fix (NBFIX) approach or rescale the charges using a theoretical framework. The goal in the latter is to include shielding produced by the missing electronic polarizability as done in the electronic continuum correction (ECC) approach. NBFIX and ECC are the most common corrections, and we compare their performance to the default parameterizations provided by five different commonly used biomolecular force fields, OPLS-AA/L, CHARMM27, CHARMM36m, CHARMM22*, and AMBER99SB-ILDN. As test systems, we use poly-α,l-glutamic and poly-α,l-aspartic amino acid molecules in explicit water together with Na+ and K+ counterions. We demonstrate that the different force fields yield results that are not only quantitatively but also qualitatively different. The resulting structures of the macroions depend strongly on the model for ions. NBFIX corrections alleviate the problem of overbinding, resulting in extended peptides. The ECC corrections depend nontrivially on the original underlying model, and despite being based on a theoretical framework, they cannot always solve the problem.

2.
Soft Matter ; 13(37): 6627-6638, 2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28926071

RESUMEN

We present results from all-atom molecular dynamics simulations for the structural properties of oligomeric lactic acid chains (OLA) grafted to the surface of cellulose nanocrystals (CNCs) and immersed in the melt of polylactic acid (PLA). Earlier, we have found that the distribution of free ends of OLA molecules is bimodal [Glova et al., Polym. Int., 2016, 65(8), 892]. The results cannot be explained within the standard picture of uncharged polymer brushes exposed to the melt of a chemically identical polymer. Although the oligomeric brushes of the OLA chains are uncharged, they have partial polarization charges producing a non-zero dipole moment of the monomeric chain unit. We study the influence of partial charges on the structure of the layer of OLA chains grafted to the CNC surface. A detailed analysis of the conformations of the grafted chains shows that interaction of partial charges in the models causes bending of the OLA molecules toward the cellulose surface, forming a hairpin structure. The observed separation of the grafted chains into two populations increases with grafting density. We demonstrate that hydrogen bonds can be formed between the free ends of the grafted chains and the CNC surface, but they do not affect the brush structure significantly. Thus, dipole-dipole interactions turn out to be the key factor governing the unusual conformations of grafts.

3.
Soft Matter ; 13(2): 474-485, 2017 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-27911451

RESUMEN

Specific intermolecular interactions, in particular H-bonding, have a strong influence on the structural, thermal and relaxation characteristics of polymers. We report here the results of molecular dynamics simulations of Nylon 6 which provides an excellent example for the investigation of such an influence. To demonstrate the effect of proper accounting for H-bonding on bulk polymer properties, the AMBER99sb force field is used with two different parametrization approaches leading to two different sets of partial atomic charges. The simulations allowed the study of the thermal and dielectric properties in a wide range of temperatures and cooling rates. The feasibility of the use of the three methods for the estimation of the glass transition temperature not only from the temperature dependence of structural characteristics such as density, but also by using the electrostatic energy and dielectric constant is demonstrated. The values of glass transition temperatures obtained at different cooling rates are practically the same for the three methods. By proper accounting for partial charges in the simulations, a reasonable agreement between the results of our simulations and experimental data for the density, thermal expansion coefficient, static dielectric constant and activation energy of γ and ß relaxations is obtained demonstrating the validity of the modeling approach reported.

4.
Langmuir ; 32(1): 125-34, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26652774

RESUMEN

Molecular dynamics (MD) simulation of a nanofibril of native bacterial cellulose (BC) in solutions of mineral ions is presented. The supersaturated calcium-phosphate (CP) solution with the ionic composition of hydroxyapatite and CaCl2 solutions with the concentrations below, equal to, and above the solubility limits are simulated. The influence of solvation models (TIP3P and TIP4P-ew water models) on structural characteristics of the simulated nanofibril and on the crystal nucleation process is assessed. The structural characteristics of cellulose nanofibrils (in particular, of the surface layer) are found to be nearly independent of the solvation models used in the simulation and on the presence of ions in the solutions. It is shown that ionic clusters are formed in the solution rather than on the fibril surface. The cluster sizes are slightly different for the two water models. The effect of the ion-ion interaction parameters on the results is discussed. The main conclusion is that the activity of hydroxyl groups on the BC fibril surface is not high enough to cause adsorption of Ca(2+) ions from the solution. Therefore, the nucleation of CP crystals takes place initially in solution, and then the crystallites formed can be adsorbed on BC nanofibril surfaces.


Asunto(s)
Celulosa/química , Durapatita/química , Nanocompuestos/química , Nanofibras/química , Simulación de Dinámica Molecular
5.
Langmuir ; 28(37): 13473-84, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-22880938

RESUMEN

The interactions responsible for the adhesion of calcium phosphate (CP) nanocrystals and bacterial cellulose (BC) nanofibrils in the composite material obtained by mixing aqueous suspensions of presynthesized CP and BC and the dependence of these interactions on the CP morphology and chemical structure have been elucidated by molecular mechanics calculations of the CP-BC interfacial structures. The interactions between the superficial CP and BC crystal layers have been simulated. Two crystalline CP structures (i.e., hydroxyapatite (HAP) and whitlockite) with two morphologies (plate-shaped and rod-shaped) were considered. Electrostatics has been found to be the major contributor to the adhesion of the CP crystallites and BC nanofibers, and the formation of interfacial hydrogen bonds makes a minor contribution to the interaction energy. It has also been found that, in general, the energy gain resulting from whitlockite-BC binding is greater than that for HAP-BC binding, and the binding of the rod-shaped crystallites of whitlockite with BC is the most profitable. The energy loss and entropy gain upon replacement of the BC-water and CP-water contacts by the BC-CP contacts have been estimated.


Asunto(s)
Bacterias/química , Fosfatos de Calcio/química , Celulosa/química , Nanocompuestos/química , Sitios de Unión , Modelos Moleculares , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA