Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-32856003

RESUMEN

Patient-specific computational modeling is increasingly used to assist with visualization, planning, and execution of medical treatments. This trend is placing more reliance on medical imaging to provide accurate representations of anatomical structures. Digital image analysis is used to extract anatomical data for use in clinical assessment/planning. However, the presence of image artifacts, whether due to interactions between the physical object and the scanning modality or the scanning process, can degrade image accuracy. The process of extracting anatomical structures from the medical images introduces additional sources of variability, e.g., when thresholding or when eroding along apparent edges of biological structures. An estimate of the uncertainty associated with extracting anatomical data from medical images would therefore assist with assessing the reliability of patient-specific treatment plans. To this end, two image datasets were developed and analyzed using standard image analysis procedures. The first dataset was developed by performing a "virtual voxelization" of a CAD model of a sphere, representing the idealized scenario of no error in the image acquisition and reconstruction algorithms (i.e., a perfect scan). The second dataset was acquired by scanning three spherical balls using a laboratory-grade CT scanner. For the idealized sphere, the error in sphere diameter was less than or equal to 2% if 5 or more voxels were present across the diameter. The measurement error degraded to approximately 4% for a similar degree of voxelization of the physical phantom. The adaptation of established thresholding procedures to improve segmentation accuracy was also investigated.

2.
Appl Opt ; 49(22): 4246-54, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20676179

RESUMEN

Recent work discovered the remarkable optical scattering properties of the scales of the white beetle Cyphochilus. It was suggested that its brilliant whiteness and brightness were due to optimization of the microstructure within its scales. Here we compare the microstructure of Cyphochilus scales to those of two other white beetles, Lepidiota stigma and Calothyrza margaritifera. Extensive optical modeling and experimental data suggest that each species displays structural optimization designed to maximize optical scatter. Optimization of the scale filling fraction is observed, as well as optimization of scattering center spacing and diameter. Cyphochilus, in particular, displays a high degree of structural optimization, resulting in its bright white appearance.


Asunto(s)
Biofisica/métodos , Escarabajos/ultraestructura , Óptica y Fotónica , Animales , Anisotropía , Rayos Láser , Luz , Microscopía Electrónica de Rastreo/métodos , Microscopía Electrónica de Transmisión/métodos , Refractometría , Dispersión de Radiación , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA