Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Retrovirology ; 10: 76, 2013 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-23880220

RESUMEN

BACKGROUND: APOBEC3 (A3) proteins restrict viral replication by cytidine deamination of viral DNA genomes and impairing reverse transcription and integration. To escape this restriction, lentiviruses have evolved the viral infectivity factor (Vif), which binds A3 proteins and targets them for proteolytic degradation. In contrast, foamy viruses (FVs) encode Bet proteins that allow replication in the presence of A3, apparently by A3 binding and/or sequestration, thus preventing A3 packaging into virions and subsequent restriction. Due to a long-lasting FV-host coevolution, Bet proteins mainly counteract restriction by A3s from their cognate or highly related host species. RESULTS: Through bioinformatics, we identified conserved motifs in Bet, all localized in the bel2 exon. In line with the localization of these conserved motifs within bel2, this part of feline FV (FFV) Bet has been shown to be essential for feline A3 (feA3) inactivation and feA3 protein binding. To study the function of the Bet motifs in detail, we analyzed the ability of targeted deletion, substitution, and chimeric FFV-PFV (prototype FV) Bet mutants to physically bind and/or inactivate feA3. Binding of Bet to feA3Z2b is sensitive to mutations in the first three conserved motifs and N- and C-terminal deletions and substitutions across almost the complete bel2 coding sequence. In contrast, the Bel1 (also designated Tas) domain of Bet is dispensable for basal feA3Z2b inactivation and binding but mainly increases the steady state level of Bet. Studies with PFV Bel1 and full-length FFV Bel2 chimeras confirmed the importance of Bel2 for A3 inactivation indicating that Bel1 is dispensable for basal feA3Z2b inactivation and binding but increases Bet stability. Moreover, the bel1/tas exon may be required for expression of a fully functional Bet protein from a spliced transcript. CONCLUSIONS: We show that the Bel2 domain of FV Bet is essential for the inactivation of APOBEC3 cytidine deaminase restriction factors. The Bel1/Tas domain increases protein stability and can be exchanged by related sequence. Since feA3 binding and inactivation by Bet are highly correlated, the data support the view that FV Bet prevents A3-mediated restriction of viral replication by creating strong complexes with these proteins.


Asunto(s)
Citosina Desaminasa/inmunología , Citosina Desaminasa/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas de los Retroviridae/inmunología , Proteínas de los Retroviridae/metabolismo , Spumavirus/fisiología , Animales , Gatos , Línea Celular , Unión Proteica , Spumavirus/inmunología
2.
Viruses ; 5(7): 1702-18, 2013 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-23857307

RESUMEN

New-generation retroviral vectors have potential applications in vaccination and gene therapy. Foamy viruses are particularly interesting as vectors, because they are not associated to any disease. Vector research is mainly based on primate foamy viruses (PFV), but cats are an alternative animal model, due to their smaller size and the existence of a cognate feline foamy virus (FFV). The potential of replication-competent (RC) FFV vectors for vaccination and replication-deficient (RD) FFV-based vectors for gene delivery purposes has been studied over the past years. In this review, the key achievements and functional evaluation of the existing vectors from in vitro cell culture systems to out-bred cats will be described. The data presented here demonstrate the broad application spectrum of FFV-based vectors, especially in pathogen-specific prophylactic and therapeutic vaccination using RD vectors in cats and in classical gene delivery. In the cat-based system, FFV-based vectors provide an advantageous platform to evaluate and optimize the applicability, efficacy and safety of foamy virus (FV) vectors, especially the understudied aspect of FV cell and organ tropism.


Asunto(s)
Terapia Genética/métodos , Vectores Genéticos , Spumavirus/genética , Vacunación/métodos , Animales , Gatos , Línea Celular , Modelos Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...