Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Gene Regul Mech ; 1866(4): 194990, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37748678

RESUMEN

Proteins play a critical role as key regulators in various biological systems, influencing crucial processes such as gene expression, cell cycle progression, and cellular proliferation. However, the functions of proteins can be further modified through post-translational modifications (PTMs), which expand their roles and contribute to disease progression when dysregulated. In this review, we delve into the methodologies employed for the characterization of PTMs, shedding light on the techniques and tools utilized to help unravel their complexity. Furthermore, we explore the prevalence of crosstalk and competition that occurs between different types of PTMs, specifically focusing on both histone and non-histone proteins. The intricate interplay between different modifications adds an additional layer of regulation to protein function and cellular processes. To gain insights into the competition for lysine residues among various modifications, computational systems such as MethylSight have been developed, allowing for a comprehensive analysis of the modification landscape. Additionally, we provide an overview of the exciting developments in the field of inhibitors or drugs targeting PTMs, highlighting their potential in combatting prevalent diseases. The discovery and development of drugs that modulate PTMs present promising avenues for therapeutic interventions, offering new strategies to address complex diseases. As research progresses in this rapidly evolving field, we anticipate remarkable advancements in our understanding of PTMs and their roles in health and disease, ultimately paving the way for innovative treatment approaches.


Asunto(s)
Lisina , Procesamiento Proteico-Postraduccional , Lisina/metabolismo , Acetilación , Histonas/metabolismo
2.
Peptides ; 158: 170898, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36279985

RESUMEN

In humans, coronaviruses are the cause of endemic illness and have been the causative agents of more severe epidemics. Most recently, SARS-CoV-2 was the causative agent of the COVID19 pandemic. Thus, there is a high interest in developing therapeutic agents targeting various stages of the coronavirus viral life cycle to disrupt viral propagation. Besides the development of small-molecule therapeutics that target viral proteases, there is also interest molecular tools to inhibit the initial event of viral attachment of the SARS-CoV-2 Spike protein to host ACE2 surface receptor. Here, we leveraged known structural information and peptide arrays to develop an in vitro peptide inhibitor of the Spike-ACE2 interaction. First, from previous co-crystal structures of the Spike-ACE2 complex, we identified an initial 24-residue long region (sequence: STIEEQAKTFLDKFNHEAEDLFYQ) on the ACE2 sequence that encompasses most of the known contact residues. Next, we scanned this 24-mer window along the ACE2 N-terminal helix and found that maximal binding to the SARS-CoV-2 receptor binding domain (CoV2-RBD) was increased when this window was shifted nine residues in the N-terminal direction. Further, by systematic permutation of this shifted ACE2-derived peptide we identified mutations to the wildtype sequence that confer increased binding of the CoV2-RBD. Among these peptides, we identified binding peptide 19 (referred to as BP19; sequence: SLVAVTAAQSTIEEQAKTFLDKFI) as an in vitro inhibitor of the Spike-ACE2 interaction with an IC50 of 2.08 ± 0.38 µM. Overall, BP19 adds to the arsenal of Spike-ACE2 inhibitors, and this study highlights the utility of systematic peptide arrays as a platform for the development of coronavirus protein inhibitors.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Tratamiento Farmacológico de COVID-19 , Humanos , SARS-CoV-2 , Unión Proteica , Péptidos/farmacología , Péptidos/metabolismo
3.
Cancer Discov ; 12(9): 2158-2179, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-35819319

RESUMEN

Small cell lung cancer (SCLC) is the most fatal form of lung cancer, with dismal survival, limited therapeutic options, and rapid development of chemoresistance. We identified the lysine methyltransferase SMYD3 as a major regulator of SCLC sensitivity to alkylation-based chemotherapy. RNF113A methylation by SMYD3 impairs its interaction with the phosphatase PP4, controlling its phosphorylation levels. This cross-talk between posttranslational modifications acts as a key switch in promoting and maintaining RNF113A E3 ligase activity, essential for its role in alkylation damage response. In turn, SMYD3 inhibition restores SCLC vulnerability to alkylating chemotherapy. Our study sheds light on a novel role of SMYD3 in cancer, uncovering this enzyme as a mediator of alkylation damage sensitivity and providing a rationale for small-molecule SMYD3 inhibition to improve responses to established chemotherapy. SIGNIFICANCE: SCLC rapidly becomes resistant to conventional chemotherapy, leaving patients with no alternative treatment options. Our data demonstrate that SMYD3 upregulation and RNF113A methylation in SCLC are key mechanisms that control the alkylation damage response. Notably, SMYD3 inhibition sensitizes cells to alkylating agents and promotes sustained SCLC response to chemotherapy. This article is highlighted in the In This Issue feature, p. 2007.


Asunto(s)
Proteínas de Unión al ADN , N-Metiltransferasa de Histona-Lisina , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Alquilación , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Metilación , Fosforilación , Procesamiento Proteico-Postraduccional , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/genética
4.
Methods Enzymol ; 669: 261-281, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35644174

RESUMEN

B12 coenzymes are vital to healthy biological function across nature. They undergo radical chemistry in a variety of contexts, where spin-correlated radical pairs can be generated both thermally and photochemically. Owing to the unusual magnetic properties of B12 radical pairs, however, most of the reaction and spin dynamics occur on a timescale (picoseconds-nanoseconds) that cannot be resolved by most measurement techniques. Here, we describe a method that combines femtosecond transient absorption spectroscopy with magnetic field exposure, which enables the direct scrutiny of such rapid processes. This approach should provide a means by which to investigate the apparently profound effect protein environments have on the generation and reactivity of B12 radical pairs.


Asunto(s)
Coenzimas , Campos Magnéticos , Radicales Libres/química , Magnetismo , Análisis Espectral
5.
Methods Enzymol ; 669: 283-301, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35644175

RESUMEN

The chemistry of B12 coenzymes is highly sensitive to the nature of their upper axial ligand and can be further tuned by their environment. Methylcobalamin, for example, generates RPs photochemically but undergoes non-radical biochemistry when bound to its dependent enzymes. Owing to the transient nature of the reaction intermediates, it remains a challenge to investigate how their environment controls reactivity. Here, we describe how to use time-resolved electron paramagnetic spectroscopy to directly monitor the generation and evolution of transient radicals that result from the photolysis of a B12 coenzyme. This method produces evolving, spin-polarized spectra that are rich in mechanistic detail.


Asunto(s)
Coenzimas , Espectroscopía de Resonancia por Spin del Electrón/métodos , Ligandos
6.
Mol Cell ; 81(20): 4228-4242.e8, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34686315

RESUMEN

Central to genotoxic responses is their ability to sense highly specific signals to activate the appropriate repair response. We previously reported that the activation of the ASCC-ALKBH3 repair pathway is exquisitely specific to alkylation damage in human cells. Yet the mechanistic basis for the selectivity of this pathway was not immediately obvious. Here, we demonstrate that RNA but not DNA alkylation is the initiating signal for this process. Aberrantly methylated RNA is sufficient to recruit ASCC, while an RNA dealkylase suppresses ASCC recruitment during chemical alkylation. In turn, recruitment of ASCC during alkylation damage, which is mediated by the E3 ubiquitin ligase RNF113A, suppresses transcription and R-loop formation. We further show that alkylated pre-mRNA is sufficient to activate RNF113A E3 ligase in vitro in a manner dependent on its RNA binding Zn-finger domain. Together, our work identifies an unexpected role for RNA damage in eliciting a specific response to genotoxins.


Asunto(s)
Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/metabolismo , Núcleo Celular/enzimología , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Neoplasias/enzimología , Proteínas Nucleares/metabolismo , Procesamiento Postranscripcional del ARN , ARN Neoplásico/metabolismo , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/genética , Núcleo Celular/genética , ADN Helicasas/genética , Metilación de ADN , Proteínas de Unión al ADN/genética , Células HEK293 , Células HeLa , Humanos , Metilación , Neoplasias/genética , Proteínas Nucleares/genética , Estructuras R-Loop , ARN Neoplásico/genética , Empalmosomas/genética , Empalmosomas/metabolismo , Transcripción Genética , Ubiquitinación
7.
Artículo en Inglés | MEDLINE | ID: mdl-34000427

RESUMEN

Following the decoding of the first human genome, researchers have vastly improved their understanding of cell biology and its regulation. As a result, it has become clear that it is not merely genetic information, but the aberrant changes in the functionality and connectivity of its encoded proteins that drive cell response to periods of stress and external cues. Therefore, proper utilization of refined methods that help to describe protein signalling or regulatory networks (i.e., functional connectivity), can help us understand how change in the signalling landscape effects the cell. However, given the vast complexity in 'how and when' proteins communicate or interact with each other, it is extremely difficult to define, characterize, and understand these interaction networks in a tangible manner. Herein lies the challenge of tackling the functional proteome; its regulation is encoded in multiple layers of interaction, chemical modification and cell compartmentalization. To address and refine simple research questions, modern reductionist strategies in protein biochemistry have successfully used peptide-based experiments; their summation helping to simplify the overall complexity of these protein interaction networks. In this way, peptides are powerful tools used in fundamental research that can be readily applied to comparative biochemical research. Understanding and defining how proteins interact is one of the key aspects towards understanding how the proteome functions. To date, reductionist peptide-based research has helped to address a wide range of proteome-related research questions, including the prediction of enzymes substrates, identification of posttranslational modifications, and the annotation of protein interaction partners. Peptide arrays have been used to identify the binding specificity of reader domains, which are able to recognise the posttranslational modifications; forming dynamic protein interactions that are dependent on modification state. Finally, representing one of the fastest growing classes of inhibitor molecules, peptides are now begin explored as "disruptors" of protein-protein interactions or enzyme activity. Collectively, this review will discuss the use of peptides, peptide arrays, peptide-oriented computational biochemistry as modern reductionist strategies in deconvoluting the functional proteome.


Asunto(s)
Fragmentos de Péptidos/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Proteoma/metabolismo , Animales , Humanos , Fragmentos de Péptidos/química , Mapas de Interacción de Proteínas , Proteínas/química
8.
Curr Protein Pept Sci ; 21(7): 655-674, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31894745

RESUMEN

Protein lysine methylation is a functionally diverse post-translational modification involved in various major cellular processes. Lysine methylation can modulate proteins activity, stability, localization, and/or interaction, resulting in specific downstream signaling and biological outcomes. Lysine methylation is a dynamic and fine-tuned process, deregulation of which often leads to human pathologies. In particular, the lysine methylome and its associated signaling network can be linked to carcinogenesis and cancer progression. Histone modifications and chromatin regulation is a major aspect of lysine methylation importance, but increasing evidence suggests that a high relevance and impact of non-histone lysine methylation signaling has emerged in recent years. In this review, we draw an updated picture of the current scientific knowledge regarding non-histone lysine methylation signaling and its implication in physiological and pathological processes. We aim to demonstrate the significance of lysine methylation as a major and yet underestimated posttranslational modification, and to raise the importance of this modification in both epigenetic and cellular signaling by focusing on the observed activities of SET- and 7ß-strandcontaining human lysine methyltransferases. Recent evidence suggests that what has been observed so far regarding lysine methylation's implication in human pathologies is only the tip of the iceberg. Therefore, the exploration of the "methylome network" raises the possibility to use these enzymes and their substrates as promising new therapeutic targets for the development of future epigenetic and methyllysine signaling cancer treatments.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Histona Demetilasas/metabolismo , Histonas/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Neoplasias/enzimología , Procesamiento Proteico-Postraduccional , Proteínas Cromosómicas no Histona/genética , Regulación Neoplásica de la Expresión Génica , Histona Demetilasas/genética , Histonas/genética , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Lisina/metabolismo , Metilación , Neoplasias/genética , Neoplasias/patología , Transducción de Señal
9.
J Phys Chem B ; 123(22): 4663-4672, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-31081330

RESUMEN

Derivatives of vitamin B12 are six-coordinate cobalt corrinoids found in humans, other animals, and microorganisms. By acting as enzymatic cofactors and photoreceptor chromophores, they serve vital metabolic and photoprotective functions. Depending on the context, the chemical mechanisms of the biologically active derivatives of B12-methylcobalamin (MeCbl) and 5'-deoxyadenosylcobalamin (AdoCbl)-can be very different from one another. The extent to which this chemistry is tuned by the upper axial ligand, however, is not yet clear. Here, we have used a combination of time-resolved Fourier transform-electron paramagnetic resonance (FT-EPR), magnetic field effect experiments, and spin dynamic simulations to reveal that the upper axial ligand alone only results in relatively minor changes to the photochemical spin dynamics of B12. By studying the photolysis of MeCbl, we find that, similar to AdoCbl, the initial (or "geminate") radical pairs (RPs) are born predominantly in the singlet spin state and thus originate from singlet excited-state precursors. This is in contrast to the triplet RPs and precursors proposed previously. Unlike AdoCbl, the extent of geminate recombination is limited following MeCbl photolysis, resulting in significant distortions to the FT-EPR signal caused by polarization from spin-correlated methyl-methyl radical "f-pairs" formed following rapid diffusion. Despite the photophysical mechanism that precedes photolysis of MeCbl showing wavelength dependence, the subsequent spin dynamics appear to be largely independent of excitation wavelength, again similar to AdoCbl. Our data finally provide clarity to what in the literature to date has been a confused and contradictory picture. We conclude that, although the upper axial position of MeCbl and AdoCbl does impact their reactivity to some extent, the remarkable biochemical diversity of these fascinating molecules is most likely a result of tuning by their protein environment.


Asunto(s)
Procesos Fotoquímicos , Vitamina B 12/análogos & derivados , Espectroscopía de Resonancia por Spin del Electrón , Concentración de Iones de Hidrógeno , Vitamina B 12/química
10.
Chemistry ; 23(28): 6811-6828, 2017 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-28261884

RESUMEN

Antimalarials can interact with heme covalently, by π⋅⋅⋅π interactions or by hydrogen bonding. Consequently, the prototropy of 4-aminoquinolines and quinoline methanols was investigated by using quantum mechanics. Calculations showed mefloquine protonated preferentially at the piperidine and was impeded at the endocyclic nitrogen because of electronic rather than steric factors. In gas-phase calculations, 7-substituted mono- and bis-4-aminoquinolines were preferentially protonated at the endocyclic quinoline nitrogen. By contrast, compounds with a trifluoromethyl substituent on both the 2- and 8-positions, reversed the order of protonation, which now favored the exocyclic secondary amine nitrogen at the 4-position. Loss of antimalarial efficacy by CF3 groups simultaneously occupying the 2- and 8-positions was recovered if the CF3 group occupied the 7-position. Hence, trifluoromethyl groups buttressing the quinolinyl nitrogen shifted binding of antimalarials to hematin, enabling switching from endocyclic to the exocyclic N. Both theoretical calculations (DFT calculations: B3LYP/BS1) and crystal structure of (±)-trans-N1 ,N2 -bis-(2,8-ditrifluoromethylquinolin-4-yl)cyclohexane-1,2-diamine were used to reveal the preferred mode(s) of interaction with hematin. The order of antimalarial activity in vivo followed the capacity for a redox change of the iron(III) state, which has important implications for the future rational design of 4-aminoquinoline antimalarials.


Asunto(s)
Antimaláricos/química , Quinolinas/química , Aminoquinolinas/química , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Cristalografía por Rayos X , Diseño de Fármacos , Espectroscopía de Resonancia por Spin del Electrón , Compuestos Férricos/química , Halogenación , Hemina/química , Hemina/metabolismo , Enlace de Hidrógeno , Isomerismo , Locomoción/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Malaria/tratamiento farmacológico , Malaria/parasitología , Malaria/patología , Ratones , Conformación Molecular , Oxidación-Reducción , Plasmodium berghei/efectos de los fármacos , Plasmodium berghei/patogenicidad , Quinolinas/farmacología , Quinolinas/uso terapéutico , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...