Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 95(18): 10902-7, 1998 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-9724802

RESUMEN

Vascular responses to neural activity are exploited as the basis of a number of brain imaging techniques. The vascular response is thought to be too slow to resolve the temporal sequence of events involved in cognitive tasks, and hence, imaging studies of mental chronometry have relied on techniques such as the evoked potential. Using rapid functional MRI (fMRI) of single trials of two simple behavioral tasks, we demonstrate that while the microvascular response to the onset of neural activity is delayed consistently by several seconds, the relative timing between the onset of the fMRI responses in different brain areas appears preserved. We examined a number of parameters that characterize the fMRI response and determined that its onset time is best defined by the inflection point from the resting baseline. We have found that fMRI onset latencies determined in this manner correlate well with independently measurable parameters of the tasks such as reaction time or stimulus presentation time and can be used to determine the origin of processing delays during cognitive or perceptual tasks with a temporal accuracy of tens of milliseconds and spatial resolution of millimeters.


Asunto(s)
Encéfalo/diagnóstico por imagen , Cognición/fisiología , Potenciales Evocados , Imagen por Resonancia Magnética/métodos , Tiempo de Reacción , Encéfalo/fisiología , Humanos , Radiografía
2.
Biochem Cell Biol ; 76(2-3): 560-71, 1998.
Artículo en Inglés | MEDLINE | ID: mdl-9923726

RESUMEN

Functional magnetic resonance imaging has become an invaluable tool for cognitive neuroscience, despite the fact that many of the physiological mechanisms giving rise to the effect are not well understood. We review the known biochemical and physiological basis of the technique and discuss how, within the noted limits, one might fully exploit the spatial and temporal resolution that is intrinsic to the very high magnetic fields that we use for human studies. This noninvasive brain mapping technique relies on the changes in blood oxygenation, blood volume, and blood flow, and we discuss some of the issues influencing the effects of these hemodynamic parameters on image intensity.


Asunto(s)
Mapeo Encefálico/métodos , Imagen por Resonancia Magnética , Anaerobiosis , Animales , Agua Corporal , Encéfalo/fisiología , Mapeo Encefálico/instrumentación , Gatos , Circulación Cerebrovascular , Cognición/fisiología , Dominancia Cerebral , Metabolismo Energético , Glucosa/metabolismo , Haplorrinos , Humanos , Hipercapnia/metabolismo , Imagen por Resonancia Magnética/instrumentación , Imagen por Resonancia Magnética/métodos , Consumo de Oxígeno , Oxihemoglobinas/análisis , Ratas , Sensibilidad y Especificidad , Procesamiento de Señales Asistido por Computador , Transmisión Sináptica/fisiología , Factores de Tiempo , Corteza Visual/anatomía & histología , Corteza Visual/fisiología , Vías Visuales/anatomía & histología , Vías Visuales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA