Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 26(11): 108080, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37860693

RESUMEN

The SARS-CoV-2 genome encodes a multitude of accessory proteins. Using comparative genomic approaches, an additional accessory protein, ORF3c, has been predicted to be encoded within the ORF3a sgmRNA. Expression of ORF3c during infection has been confirmed independently by ribosome profiling. Despite ORF3c also being present in the 2002-2003 SARS-CoV, its function has remained unexplored. Here we show that ORF3c localizes to mitochondria, where it inhibits innate immunity by restricting IFN-ß production, but not NF-κB activation or JAK-STAT signaling downstream of type I IFN stimulation. We find that ORF3c is inhibitory after stimulation with cytoplasmic RNA helicases RIG-I or MDA5 or adaptor protein MAVS, but not after TRIF, TBK1 or phospho-IRF3 stimulation. ORF3c co-immunoprecipitates with the antiviral proteins MAVS and PGAM5 and induces MAVS cleavage by caspase-3. Together, these data provide insight into an uncharacterized mechanism of innate immune evasion by this important human pathogen.

2.
PLoS Biol ; 21(7): e3001815, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37459343

RESUMEN

During the last decade, the detection of neurotropic astroviruses has increased dramatically. The MLB genogroup of astroviruses represents a genetically distinct group of zoonotic astroviruses associated with gastroenteritis and severe neurological complications in young children, the immunocompromised, and the elderly. Using different virus evolution approaches, we identified dispensable regions in the 3' end of the capsid-coding region responsible for attenuation of MLB astroviruses in susceptible cell lines. To create recombinant viruses with identified deletions, MLB reverse genetics (RG) and replicon systems were developed. Recombinant truncated MLB viruses resulted in imbalanced RNA synthesis and strong attenuation in iPSC-derived neuronal cultures confirming the location of neurotropism determinants. This approach can be used for the development of vaccine candidates using attenuated astroviruses that infect humans, livestock animals, and poultry.


Asunto(s)
Infecciones por Astroviridae , Gastroenteritis , Mamastrovirus , Niño , Animales , Humanos , Preescolar , Anciano , Mamastrovirus/genética , Infecciones por Astroviridae/veterinaria , Infecciones por Astroviridae/diagnóstico , Proteínas de la Cápside/genética , Cápside , Filogenia
3.
J Virol ; 97(3): e0003823, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36779761

RESUMEN

Coronaviruses infect a wide variety of host species, resulting in a range of diseases in both humans and animals. The coronavirus genome consists of a large positive-sense single-stranded molecule of RNA containing many RNA structures. One structure, denoted s2m and consisting of 41 nucleotides, is located within the 3' untranslated region (3' UTR) and is shared between some coronavirus species, including infectious bronchitis virus (IBV), severe acute respiratory syndrome coronavirus (SARS-CoV), and SARS-CoV-2, as well as other pathogens, including human astrovirus. Using a reverse genetic system to generate recombinant viruses, we investigated the requirement of the s2m structure in the replication of IBV, a globally distributed economically important Gammacoronavirus that infects poultry causing respiratory disease. Deletion of three nucleotides predicted to destabilize the canonical structure of the s2m or the deletion of the nucleotides corresponding to s2m impacted viral replication in vitro. In vitro passaging of the recombinant IBV with the s2m sequence deleted resulted in a 36-nucleotide insertion in place of the deletion, which was identified to be composed of a duplication of flanking sequences. A similar result was observed following serial passage of human astrovirus with a deleted s2m sequence. RNA modeling indicated that deletion of the nucleotides corresponding to the s2m impacted other RNA structures present in the IBV 3' UTR. Our results indicated for both IBV and human astrovirus a preference for nucleotide occupation in the genome location corresponding to the s2m, which is independent of the specific s2m sequence. IMPORTANCE Coronaviruses infect many species, including humans and animals, with substantial effects on livestock, particularly with respect to poultry. The coronavirus RNA genome consists of structural elements involved in viral replication whose roles are poorly understood. We investigated the requirement of the RNA structural element s2m in the replication of the Gammacoronavirus infectious bronchitis virus, an economically important viral pathogen of poultry. Using reverse genetics to generate recombinant IBVs with either a disrupted or deleted s2m, we showed that the s2m is not required for viral replication in cell culture; however, replication is decreased in tracheal tissue, suggesting a role for the s2m in the natural host. Passaging of these viruses as well as human astrovirus lacking the s2m sequence demonstrated a preference for nucleotide occupation, independent of the s2m sequence. RNA modeling suggested deletion of the s2m may negatively impact other essential RNA structures.


Asunto(s)
Virus de la Bronquitis Infecciosa , Mamastrovirus , Mutagénesis Insercional , Animales , Humanos , Regiones no Traducidas 3'/genética , Pollos/virología , Virus de la Bronquitis Infecciosa/genética , Mamastrovirus/genética , Mutagénesis Insercional/genética , Enfermedades de las Aves de Corral/virología , ARN Viral/genética , Replicación Viral/genética , Estabilidad del ARN/genética , Eliminación de Secuencia/genética
4.
bioRxiv ; 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35547847

RESUMEN

The stem-loop II motif (s2m) is an RNA element present in viruses from divergent viral families, including astroviruses and coronaviruses, but its functional significance is unknown. We created deletions or substitutions of the s2m in astrovirus VA1 (VA1), classic human astrovirus 1 (HAstV1) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For VA1, recombinant virus could not be rescued upon partial deletion of the s2m or substitutions of G-C base pairs. Compensatory substitutions that restored the G-C base-pair enabled recovery of VA1. For HAstV1, a partial deletion of the s2m resulted in decreased viral titers compared to wild-type virus, and reduced activity in a replicon system. In contrast, deletion or mutation of the SARS-CoV-2 s2m had no effect on the ability to rescue the virus, growth in vitro , or growth in Syrian hamsters. Our study demonstrates the importance of the s2m is virus-dependent.

5.
J Virol ; 95(20): e0097321, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34319778

RESUMEN

Alphaviruses (family Togaviridae) include both human pathogens such as chikungunya virus (CHIKV) and Sindbis virus (SINV) and model viruses such as Semliki Forest virus (SFV). The alphavirus positive-strand RNA genome is translated into nonstructural (ns) polyprotein(s) that are precursors for four nonstructural proteins (nsPs). The three-dimensional structures of nsP2 and the N-terminal 2/3 of nsP3 reveal that these proteins consist of several domains. Cleavage of the ns-polyprotein is performed by the strictly regulated protease activity of the nsP2 region. Processing results in the formation of a replicase complex that can be considered a network of functional modules. These modules work cooperatively and should perform the same task for each alphavirus. To investigate functional interactions between replicase components, we generated chimeras using the SFV genome as a backbone. The functional modules corresponding to different parts of nsP2 and nsP3 were swapped with their counterparts from CHIKV and SINV. Although some chimeras were nonfunctional, viruses harboring the CHIKV N-terminal domain of nsP2 or any domain of nsP3 were viable. Viruses harboring the protease part of nsP2, the full-length nsP2 of CHIKV, or the nsP3 macrodomain of SINV required adaptive mutations for functionality. Seven mutations that considerably improved the infectivity of the corresponding chimeric genomes affected functionally important hot spots recurrently highlighted in previous alphavirus studies. These data indicate that alphaviruses utilize a rather limited set of strategies to survive and adapt. Furthermore, functional analysis revealed that the disturbance of processing was the main defect resulting from chimeric alterations within the ns-polyprotein. IMPORTANCE Alphaviruses cause debilitating symptoms and have caused massive outbreaks. There are currently no approved antivirals or vaccines for treating these infections. Understanding the functions of alphavirus replicase proteins (nsPs) provides valuable information for both antiviral drug and vaccine development. The nsPs of all alphaviruses consist of similar functional modules; however, to what extent these are independent in functionality and thus interchangeable among homologous viruses is largely unknown. Homologous domain swapping was used to study the functioning of modules from nsP2 and nsP3 of other alphaviruses in the context of Semliki Forest virus. Most of the introduced substitutions resulted in defects in the processing of replicase precursors that were typically compensated by adaptive mutations that mapped to determinants of polyprotein processing. Understanding the principles of virus survival strategies and identifying hot spot mutations that permit virus adaptation highlight a route to the rapid development of attenuated viruses as potential live vaccine candidates.


Asunto(s)
Adaptación Biológica/genética , Alphavirus/genética , Virus de los Bosques Semliki/genética , Línea Celular , Virus Chikungunya/genética , Quimera/genética , Quimera/metabolismo , Virus ADN/genética , Humanos , Mutación/genética , Poliproteínas/metabolismo , ARN Viral/metabolismo , Virus Sindbis/genética , Proteínas no Estructurales Virales/genética , Compartimentos de Replicación Viral/metabolismo , Replicación Viral/genética
6.
J Virol ; 95(14): e0066321, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-33963053

RESUMEN

RNA structural elements occur in numerous single-stranded positive-sense RNA viruses. The stem-loop 2 motif (s2m) is one such element with an unusually high degree of sequence conservation, being found in the 3' untranslated region (UTR) in the genomes of many astroviruses, some picornaviruses and noroviruses, and a variety of coronaviruses, including severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. The evolutionary conservation and its occurrence in all viral subgenomic transcripts imply a key role for s2m in the viral infection cycle. Our findings indicate that the element, while stably folded, can nonetheless be invaded and remodeled spontaneously by antisense oligonucleotides (ASOs) that initiate pairing in exposed loops and trigger efficient sequence-specific RNA cleavage in reporter assays. ASOs also act to inhibit replication in an astrovirus replicon model system in a sequence-specific, dose-dependent manner and inhibit SARS-CoV-2 replication in cell culture. Our results thus permit us to suggest that the s2m element is readily targeted by ASOs, which show promise as antiviral agents. IMPORTANCE The highly conserved stem-loop 2 motif (s2m) is found in the genomes of many RNA viruses, including SARS-CoV-2. Our findings indicate that the s2m element can be targeted by antisense oligonucleotides. The antiviral potential of this element represents a promising start for further research into targeting conserved elements in RNA viruses.


Asunto(s)
COVID-19 , Genoma Viral , Motivos de Nucleótidos , Pliegue del ARN , ARN Viral , SARS-CoV-2/fisiología , Replicación Viral , Animales , COVID-19/genética , COVID-19/metabolismo , Chlorocebus aethiops , Células HEK293 , Humanos , ARN Viral/genética , ARN Viral/metabolismo , Células Vero
7.
Nat Commun ; 11(1): 4070, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32792502

RESUMEN

Human astroviruses are small non-enveloped viruses with positive-sense single-stranded RNA genomes. Astroviruses cause acute gastroenteritis in children worldwide and have been associated with encephalitis and meningitis in immunocompromised individuals. It is still unknown how astrovirus particles exit infected cells following replication. Through comparative genomic analysis and ribosome profiling we here identify and confirm the expression of a conserved alternative-frame ORF, encoding the protein XP. XP-knockout astroviruses are attenuated and pseudo-revert on passaging. Further investigation into the function of XP revealed plasma and trans Golgi network membrane-associated roles in virus assembly and/or release through a viroporin-like activity. XP-knockout replicons have only a minor replication defect, demonstrating the role of XP at late stages of infection. The discovery of XP advances our knowledge of these important human viruses and opens an additional direction of research into their life cycle and pathogenesis.


Asunto(s)
Canales Iónicos/metabolismo , Mamastrovirus/metabolismo , Proteínas no Estructurales Virales/metabolismo , Animales , Línea Celular , Cricetinae , Electroforesis en Gel de Poliacrilamida , Genómica/métodos , Células HeLa , Humanos , Immunoblotting , Inmunoprecipitación , Canales Iónicos/genética , Mamastrovirus/genética , Microscopía Fluorescente , Plásmidos/genética , Ribosomas , Proteínas no Estructurales Virales/genética , Proteínas Viroporinas , Replicación Viral/genética , Replicación Viral/fisiología
8.
Bio Protoc ; 9(10)2019 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-31192271

RESUMEN

In virology the difference between the fitness of two viruses can be determined by using various methods, such as virus titer, growth curve analysis, measurement of virus infectivity, analysis of produced RNA copies and viral protein production. However, for closely performing viruses, it is often very hard to distinguish the differences. In vitro competition assays are a sensitive tool for determining viral replication fitness for many viruses replicating in cell culture. Relative viral replication fitness is usually measured from multiple cycle growth competition assays. Competition assays provide a sensitive measurement of viral fitness since the viruses are competing for cellular targets under identical growth conditions. This protocol describes a competition assay for enteroviruses and contains two alternative formats for initial infections, which can be varied depending on specific goals for each particular experiment. The protocol involves infection of cells with competing viruses, passaging, RNA extraction from infected cells, RT-PCR and Sanger sequencing followed by comparative analysis of resulting chromatograms obtained under various initial infection conditions. The techniques are applicable to members of many virus families, such as alphaviruses, flaviviruses, pestiviruses, and other RNA viruses with an established reverse genetics system.

9.
Nat Microbiol ; 4(2): 280-292, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30478287

RESUMEN

Enteroviruses comprise a large group of mammalian pathogens that includes poliovirus. Pathology in humans ranges from sub-clinical to acute flaccid paralysis, myocarditis and meningitis. Until now, all of the enteroviral proteins were thought to derive from the proteolytic processing of a polyprotein encoded in a single open reading frame. Here we report that many enterovirus genomes also harbour an upstream open reading frame (uORF) that is subject to strong purifying selection. Using echovirus 7 and poliovirus 1, we confirmed the expression of uORF protein in infected cells. Through ribosome profiling (a technique for the global footprinting of translating ribosomes), we also demonstrated translation of the uORF in representative members of the predominant human enterovirus species, namely Enterovirus A, B and C. In differentiated human intestinal organoids, uORF protein-knockout echoviruses are attenuated compared to the wild-type at late stages of infection where membrane-associated uORF protein facilitates virus release. Thus, we have identified a previously unknown enterovirus protein that facilitates virus growth in gut epithelial cells-the site of initial viral invasion into susceptible hosts. These findings overturn the 50-year-old dogma that enteroviruses use a single-polyprotein gene expression strategy and have important implications for the understanding of enterovirus pathogenesis.


Asunto(s)
Infecciones por Enterovirus/virología , Enterovirus/genética , Enterovirus/patogenicidad , Mucosa Intestinal/virología , Sistemas de Lectura Abierta/fisiología , Proteínas Virales/metabolismo , Línea Celular , Membrana Celular/metabolismo , Enterovirus/clasificación , Expresión Génica , Técnicas de Inactivación de Genes , Genoma Viral/genética , Humanos , Mutación , Sistemas de Lectura Abierta/genética , Organoides/virología , Filogenia , Biosíntesis de Proteínas , ARN Viral/genética , ARN Viral/metabolismo , Selección Genética , Proteínas Virales/genética , Liberación del Virus
10.
Viruses ; 10(5)2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29702546

RESUMEN

Infection by Chikungunya virus (CHIKV) of the Old World alphaviruses (family Togaviridae) in humans can cause arthritis and arthralgia. The virus encodes four non-structural proteins (nsP) (nsP1, nsp2, nsP3 and nsP4) that act as subunits of the virus replicase. These proteins also interact with numerous host proteins and some crucial interactions are mediated by the unstructured C-terminal hypervariable domain (HVD) of nsP3. In this study, a human cell line expressing EGFP tagged with CHIKV nsP3 HVD was established. Using quantitative proteomics, it was found that CHIKV nsP3 HVD can bind cytoskeletal proteins, including CD2AP, SH3KBP1, CAPZA1, CAPZA2 and CAPZB. The interaction with CD2AP was found to be most evident; its binding site was mapped to the second SH3 ligand-like element in nsP3 HVD. Further assessment indicated that CD2AP can bind to nsP3 HVDs of many different New and Old World alphaviruses. Mutation of the short binding element hampered the ability of the virus to establish infection. The mutation also abolished ability of CD2AP to co-localise with nsP3 and replication complexes of CHIKV; the same was observed for Semliki Forest virus (SFV) harbouring a similar mutation. Similar to CD2AP, its homolog SH3KBP1 also bound the identified motif in CHIKV and SFV nsP3.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Alphavirus/fisiología , Secuencias de Aminoácidos/genética , Sitios de Unión/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo , Alphavirus/genética , Animales , Proteína CapZ/metabolismo , Línea Celular , Virus Chikungunya/genética , Virus Chikungunya/fisiología , Cricetinae , Interacciones Huésped-Patógeno , Humanos , Mutación , Unión Proteica , Virus de los Bosques Semliki/genética , Virus de los Bosques Semliki/fisiología , Proteínas no Estructurales Virales/genética , Replicación Viral/genética
11.
J Virol ; 92(14)2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29695431

RESUMEN

Polyprotein processing has an important regulatory role in the life cycle of positive-strand RNA viruses. In the case of alphaviruses, sequential cleavage of the nonstructural polyprotein (ns-polyprotein) at three sites eventually yields four mature nonstructural proteins (nsPs) that continue working in complex to replicate viral genomic RNA and transcribe subgenomic RNA. Recognition of cleavage sites by viral nsP2 protease is guided by short sequences upstream of the scissile bond and, more importantly, by the spatial organization of the replication complex. In this study, we analyzed the consequences of the artificially accelerated processing of the Semliki Forest virus ns-polyprotein. It was found that in mammalian cells, not only the order but also the correct timing of the cleavage events is essential for the success of viral replication. Analysis of the effects of compensatory mutations in rescued viruses as well as in vitro translation and trans-replicase assays corroborated our findings and revealed the importance of the V515 residue in nsP2 for recognizing the P4 position in the nsP1/nsP2 cleavage site. We also extended our conclusions to Sindbis virus by analyzing the properties of the hyperprocessive variant carrying the N614D mutation in nsP2. We conclude that the sequence of the nsP1/nsP2 site in alphaviruses is under selective pressure to avoid the presence of sequences that are recognized too efficiently and would otherwise lead to premature cleavage at this site before completion of essential tasks of RNA synthesis or virus-induced replication complex formation. Even subtle changes in the ns-polyprotein processing pattern appear to lead to virus attenuation.IMPORTANCE The polyprotein expression strategy is a cornerstone of alphavirus replication. Three sites within the ns-polyprotein are recognized by the viral nsP2 protease and cleaved in a defined order. Specific substrate targeting is achieved by the recognition of the short sequence upstream of the scissile bond and a correct macromolecular assembly of ns-polyprotein. Here, we highlighted the importance of the timeliness of proteolytic events, as an additional layer of regulation of efficient virus replication. We conclude that, somewhat counterintuitively, the cleavage site sequences at the nsP1/nsP2 and nsP2/nsP3 junctions are evolutionarily selected to be recognized by protease inefficiently, to avoid premature cleavages that would be detrimental for the assembly and functionality of the replication complex. Understanding the causes and consequences of viral polyprotein processing events is important for predicting the properties of mutant viruses and should be helpful for the development of better vaccine candidates and understanding potential mechanisms of resistance to protease inhibitors.


Asunto(s)
Infecciones por Alphavirus/virología , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Proteolisis , Virus de los Bosques Semliki/fisiología , Proteínas no Estructurales Virales/metabolismo , Infecciones por Alphavirus/metabolismo , Células Cultivadas , Genoma Viral , Riñón/virología , Mutación , ARN Viral , Proteínas no Estructurales Virales/genética , Replicación Viral
12.
Vaccine ; 35(33): 4262-4269, 2017 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-28625521

RESUMEN

African horse sickness virus (AHSV) is an orbivirus, a member of the Reoviridae family. Nine different serotypes have been described so far. AHSV is vectored by Culicoides spp. to equids, causing high mortality, particularly in horses, with considerable economic impacts. For development of a safe attenuated vaccine, we previously established an efficient reverse genetics (RG) system to generate Entry Competent Replication-Abortive (ECRA) virus strains, for all nine serotypes and demonstrated the vaccine potential of these strains in type I interferon receptor (IFNAR)-knockout mice. Here, we evaluated the protective efficacies of these ECRA viruses in AHSV natural hosts. One monoserotype (ECRA.A4) vaccine and one multivalent cocktail (ECRA.A1/4/6/8) vaccine were tested in ponies and subsequently challenged with a virulent AHSV4. In contrast to control animals, all vaccinated ponies were protected and did not develop severe clinical symptoms of AHS. Furthermore, the multivalent cocktail vaccinated ponies produced neutralizing antibodies against all serotypes present in the cocktail, and a foal born during the trial was healthy and had no viremia. These results validate the suitability of these ECRA strains as a new generation of vaccines for AHSV.


Asunto(s)
Virus de la Enfermedad Equina Africana/inmunología , Enfermedad Equina Africana/prevención & control , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología , Enfermedad Equina Africana/inmunología , Enfermedad Equina Africana/patología , Virus de la Enfermedad Equina Africana/fisiología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Caballos , Genética Inversa , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Vacunas Virales/genética , Replicación Viral
13.
Clin Cancer Res ; 23(6): 1519-1530, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-27637889

RESUMEN

Background: Glioblastoma multiforme and high-risk neuroblastoma are cancers with poor outcome. Immunotherapy in the form of neurotropic oncolytic viruses is a promising therapeutic approach for these malignancies. Here we evaluate the oncolytic capacity of the neurovirulent and partly IFNß-resistant Semliki Forest virus (SFV)-4 in glioblastoma multiformes and neuroblastomas. To reduce neurovirulence we constructed SFV4miRT, which is attenuated in normal central nervous system (CNS) cells through insertion of microRNA target sequences for miR124, miR125, miR134.Methods: Oncolytic activity of SFV4miRT was examined in mouse neuroblastoma and glioblastoma multiforme cell lines and in patient-derived human glioblastoma cell cultures (HGCC). In vivo neurovirulence and therapeutic efficacy was evaluated in two syngeneic orthotopic glioma models (CT-2A, GL261) and a syngeneic subcutaneous neuroblastoma model (NXS2). The role of IFNß in inhibiting therapeutic efficacy was investigated.Results: The introduction of miRNA target sequences reduced neurovirulence of SFV4 in terms of attenuated replication in mouse CNS cells and ability to cause encephalitis when administered intravenously. A single intravenous injection of SFV4miRT prolonged survival and cured four of eight mice (50%) with NXS2 and three of 11 mice (27%) with CT-2A, but not for GL261 tumor-bearing mice. In vivo therapeutic efficacy in different tumor models inversely correlated to secretion of IFNß by respective cells upon SFV4 infection in vitro Similarly, killing efficacy of HGCC lines inversely correlated to IFNß response and interferon-α/ß receptor-1 expression.Conclusions: SFV4miRT has reduced neurovirulence, while retaining its oncolytic capacity. SFV4miRT is an excellent candidate for treatment of glioblastoma multiforme and neuroblastoma with low IFN-ß secretion. Clin Cancer Res; 23(6); 1519-30. ©2016 AACR.


Asunto(s)
Glioblastoma/terapia , Neoplasias Experimentales/terapia , Neuroblastoma/terapia , Virus Oncolíticos/genética , Animales , Sistema Nervioso Central/virología , Modelos Animales de Enfermedad , Glioblastoma/genética , Glioblastoma/virología , Humanos , Interferón beta/genética , Ratones , MicroARNs/genética , MicroARNs/uso terapéutico , Neoplasias Experimentales/genética , Neoplasias Experimentales/virología , Neuroblastoma/virología , Viroterapia Oncolítica/efectos adversos , Virus de los Bosques Semliki/genética
15.
J Virol ; 90(16): 7405-7414, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27279609

RESUMEN

UNLABELLED: African horse sickness virus (AHSV), an orbivirus in the Reoviridae family with nine different serotypes, causes devastating disease in equids. The virion particle is composed of seven proteins organized in three concentric layers, an outer layer made of VP2 and VP5, a middle layer made of VP7, and inner layer made of VP3 that encloses a replicase complex of VP1, VP4, and VP6 and a genome of 10 double-stranded RNA segments. In this study, we sought to develop highly efficacious candidate vaccines against all AHSV serotypes, taking into account not only immunogenic and safety properties but also virus productivity and stability parameters, which are essential criteria for vaccine candidates. To achieve this goal, we first established a highly efficient reverse genetics (RG) system for AHSV serotype 1 (AHSV1) and, subsequently, a VP6-defective AHSV1 strain in combination with in trans complementation of VP6. This was then used to generate defective particles of all nine serotypes, which required the exchange of two to five RNA segments to achieve equivalent titers of particles. All reassortant-defective viruses could be amplified and propagated to high titers in cells complemented with VP6 but were totally incompetent in any other cells. Furthermore, these replication-incompetent AHSV particles were demonstrated to be highly protective against homologous virulent virus challenges in type I interferon receptor (IFNAR)-knockout mice. Thus, these defective viruses have the potential to be used for the development of safe and stable vaccine candidates. The RG system also provides a powerful tool for the study of the role of individual AHSV proteins in virus assembly, morphogenesis, and pathogenesis. IMPORTANCE: African horse sickness virus is transmitted by biting midges and causes African horse sickness in equids, with mortality reaching up to 95% in naive horses. Therefore, the development of efficient vaccines is extremely important due to major economic losses in the equine industry. Through the establishment of a highly efficient RG system, replication-deficient viruses of all nine AHSV serotypes were generated. These defective viruses achieved high titers in a cell line complemented with VP6 but failed to propagate in wild-type mammalian or insect cells. Importantly, these candidate vaccine strains showed strong protective efficacy against AHSV infection in an IFNAR(-/-) mouse model.


Asunto(s)
Virus de la Enfermedad Equina Africana/inmunología , Enfermedad Equina Africana/prevención & control , Virus Defectuosos/inmunología , Vacunas Virales/metabolismo , Virión/metabolismo , Ensamble de Virus , Replicación Viral , Virus de la Enfermedad Equina Africana/genética , Virus de la Enfermedad Equina Africana/fisiología , Animales , Virus Defectuosos/genética , Virus Defectuosos/fisiología , Modelos Animales de Enfermedad , Eliminación de Gen , Ratones , Ratones Noqueados , Genética Inversa , Serogrupo , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología
16.
J Virol ; 90(4): 2008-20, 2016 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-26656680

RESUMEN

UNLABELLED: Venezuelan equine encephalitis virus (VEEV) is an important human and animal pathogen, for which no safe and efficient vaccines or therapeutic means have been developed. Viral particle assembly and budding processes represent potential targets for therapeutic intervention. However, our understanding of the mechanistic process of VEEV assembly, RNA encapsidation, and the roles of different capsid-specific domains in these events remain to be described. The results of this new study demonstrate that the very amino-terminal VEEV capsid-specific subdomain SD1 is a critical player in the particle assembly process. It functions in a virus-specific mode, and its deletion, mutation, or replacement by the same subdomain derived from other alphaviruses has strong negative effects on infectious virus release. VEEV variants with mutated SD1 accumulate adaptive mutations in both SD1 and SD2, which result in a more efficiently replicating phenotype. Moreover, efficient nucleocapsid and particle assembly proceeds only when the two subdomains, SD1 and SD2, are derived from the same alphavirus. These two subdomains together appear to form the central core of VEEV nucleocapsids, and their interaction is one of the driving forces of virion assembly and budding. The similar domain structures of alphavirus capsid proteins suggest that this new knowledge can be applied to other alphaviruses. IMPORTANCE: Alphaviruses are a group of human and animal pathogens which cause periodic outbreaks of highly debilitating diseases. Despite significant progress made in understanding the overall structure of alphavirus and VEEV virions, and glycoprotein spikes in particular, the mechanistic process of nucleocapsid assembly, RNA encapsidation, and the roles of different capsid-specific domains in these processes remain to be described. Our new data demonstrate that the very amino-terminal subdomain of Venezuelan equine encephalitis virus capsid protein, SD1, plays a critical role in the nucleocapsid assembly. It functions synergistically with the following SD2 (helix I) and appears to form a core in the center of nucleocapsid. The core formation is one of the driving forces of alphavirus particle assembly.


Asunto(s)
Proteínas de la Cápside/metabolismo , Virus de la Encefalitis Equina Venezolana/fisiología , Nucleocápside/metabolismo , Virión/metabolismo , Ensamble de Virus , Secuencia de Aminoácidos , Animales , Proteínas de la Cápside/genética , Línea Celular , Cricetinae , Análisis Mutacional de ADN , Virus de la Encefalitis Equina Venezolana/genética , Virus de la Encefalitis Equina Venezolana/ultraestructura , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Ensayo de Placa Viral , Virión/ultraestructura
17.
J Virol ; 89(6): 3145-62, 2015 03.
Artículo en Inglés | MEDLINE | ID: mdl-25552719

RESUMEN

UNLABELLED: Chikungunya virus (CHIKV) (genus Alphavirus) has a positive-sense RNA genome. CHIKV nonstructural protein 2 (nsP2) proteolytically processes the viral nonstructural polyprotein, possesses nucleoside triphosphatase (NTPase), RNA triphosphatase, and RNA helicase activities, and induces cytopathic effects in vertebrate cells. Although alphaviral nsP2 mutations can result in a noncytotoxic phenotype, the effects of such mutations on nsP2 enzymatic activities are not well understood. In this study, we introduced a P718G (PG) mutation and selected for additional mutations in CHIKV nsP2 that resulted in a CHIKV replicon with a noncytotoxic phenotype in BHK-21 cells. Combinations of PG and either an E117K (EK) substitution or a GEEGS sequence insertion after residue T647 (5A) markedly reduced RNA synthesis; however, neither PG nor 5A prevented nsP2 nuclear translocation. Introducing PG into recombinant nsP2 inhibited proteolytic cleavage of nsP1/nsP2 and nsP3/nsP4 sites, reduced GTPase and RNA helicase activities, and abolished RNA stimulation of GTPase activity. 5A and EK modulated the effects of PG. However, only the RNA helicase activity of nsP2 was reduced by both of these mutations, suggesting that defects in this activity may be linked to a noncytotoxic phenotype. These results increase our understanding of the molecular basis for the cytotoxicity that accompanies alphaviral replication. Furthermore, adaptation of the CHIKV replicon containing both 5A and PG allowed the selection of a CHIKV replicon with adaptive mutations in nsP1 and nsP3 that enable persistence in human cell line. Such cell lines represent valuable experimental systems for discovering host factors and for screening inhibitors of CHIKV replication at lower biosafety levels. IMPORTANCE: CHIKV is a medically important pathogen that causes febrile illness and can cause chronic arthritis. No approved vaccines or antivirals are available for CHIKV. The attenuation of CHIKV is critical to the establishment of experimental systems that can be used to conduct virus replication studies at a lower biosafety level. We applied a functional selection approach to develop, for the first time, a noncytotoxic CHIKV replicon capable of persisting in human cell lines. We anticipate that this safe and efficient research tool will be valuable for screening CHIKV replication inhibitors and for identifying and analyzing host factors involved in viral replication. We also analyzed, from virological and protein biochemistry perspectives, the functional defects caused by mutations conferring noncytotoxic phenotypes; we found that all known enzymatic activities of CHIKV nsP2, as well as its RNA-binding capability, were compromised by these mutations, which led to a reduced capacity for replication.


Asunto(s)
Ácido Anhídrido Hidrolasas/metabolismo , Virus Chikungunya/enzimología , Mutación Missense , ARN Helicasas/metabolismo , Replicón , Proteínas no Estructurales Virales/metabolismo , Ácido Anhídrido Hidrolasas/genética , Virus Chikungunya/genética , Virus Chikungunya/fisiología , Humanos , Fenotipo , ARN Helicasas/genética , ARN Viral/genética , ARN Viral/metabolismo , Proteínas no Estructurales Virales/genética , Replicación Viral
18.
EMBO Mol Med ; 7(1): 24-41, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25452586

RESUMEN

RNA-sensing toll-like receptors (TLRs) mediate innate immunity and regulate anti-viral response. We show here that TLR3 regulates host immunity and the loss of TLR3 aggravates pathology in Chikungunya virus (CHIKV) infection. Susceptibility to CHIKV infection is markedly increased in human and mouse fibroblasts with defective TLR3 signaling. Up to 100-fold increase in CHIKV load was observed in Tlr3-/- mice, alongside increased virus dissemination and pro-inflammatory myeloid cells infiltration. Infection in bone marrow chimeric mice showed that TLR3-expressing hematopoietic cells are required for effective CHIKV clearance. CHIKV-specific antibodies from Tlr3-/- mice exhibited significantly lower in vitro neutralization capacity, due to altered virus-neutralizing epitope specificity. Finally, SNP genotyping analysis of CHIKF patients on TLR3 identified SNP rs6552950 to be associated with disease severity and CHIKV-specific neutralizing antibody response. These results demonstrate a key role for TLR3-mediated antibody response to CHIKV infection, virus replication and pathology, providing a basis for future development of immunotherapeutics in vaccine development.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Fiebre Chikungunya/inmunología , Virus Chikungunya/fisiología , Receptor Toll-Like 3/genética , Replicación Viral , Adulto , Anciano , Animales , Fiebre Chikungunya/genética , Fiebre Chikungunya/patología , Fiebre Chikungunya/virología , Virus Chikungunya/inmunología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Especificidad de la Especie , Receptor Toll-Like 3/inmunología , Adulto Joven
19.
J Virol ; 88(22): 13333-43, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25210177

RESUMEN

UNLABELLED: Chikungunya virus (CHIKV) is a reemerging mosquito-borne alphavirus that causes debilitating arthralgia in humans. Here we describe the development and testing of novel DNA replicon and protein CHIKV vaccine candidates and evaluate their abilities to induce antigen-specific immune responses against CHIKV. We also describe homologous and heterologous prime-boost immunization strategies using novel and previously developed CHIKV vaccine candidates. Immunogenicity and efficacy were studied in a mouse model of CHIKV infection and showed that the DNA replicon and protein antigen were potent vaccine candidates, particularly when used for priming and boosting, respectively. Several prime-boost immunization strategies eliciting unmatched humoral and cellular immune responses were identified. Further characterization by antibody epitope mapping revealed differences in the qualitative immune responses induced by the different vaccine candidates and immunization strategies. Most vaccine modalities resulted in complete protection against wild-type CHIKV infection; however, we did identify circumstances under which certain immunization regimens may lead to enhancement of inflammation upon challenge. These results should help guide the design of CHIKV vaccine studies and will form the basis for further preclinical and clinical evaluation of these vaccine candidates. IMPORTANCE: As of today, there is no licensed vaccine to prevent CHIKV infection. In considering potential new vaccine candidates, a vaccine that could raise long-term protective immunity after a single immunization would be preferable. While humoral immunity seems to be central for protection against CHIKV infection, we do not yet fully understand the correlates of protection. Therefore, in the absence of a functional vaccine, there is a need to evaluate a number of different candidates, assessing their merits when they are used either in a single immunization or in a homologous or heterologous prime-boost modality. Here we show that while single immunization with various vaccine candidates results in potent responses, combined approaches significantly enhance responses, suggesting that such approaches need to be considered in the further development of an efficacious CHIKV vaccine.


Asunto(s)
Fiebre Chikungunya/prevención & control , Virus Chikungunya/inmunología , Inmunización/métodos , Vacunas de ADN/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/sangre , Fiebre Chikungunya/inmunología , Modelos Animales de Enfermedad , Femenino , Leucocitos Mononucleares/inmunología , Ratones Endogámicos C57BL , Análisis de Supervivencia , Vacunas de ADN/administración & dosificación , Vacunas Virales/administración & dosificación
20.
J Virol ; 88(5): 2858-66, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24371047

RESUMEN

UNLABELLED: Chikungunya virus (CHIKV) is a reemerging mosquito-borne alphavirus that has caused severe epidemics in Africa and Asia and occasionally in Europe. As of today, there is no licensed vaccine available to prevent CHIKV infection. Here we describe the development and evaluation of novel CHIKV vaccine candidates that were attenuated by deleting a large part of the gene encoding nsP3 or the entire gene encoding 6K and were administered as viral particles or infectious genomes launched by DNA. The resulting attenuated mutants were genetically stable and elicited high magnitudes of binding and neutralizing antibodies as well as strong T cell responses after a single immunization in C57BL/6 mice. Subsequent challenge with a high dose of CHIKV demonstrated that the induced antibody responses protected the animals from viremia and joint swelling. The protective antibody response was long-lived, and a second homologous immunization further enhanced immune responses. In summary, this report demonstrates a straightforward means of constructing stable and efficient attenuated CHIKV vaccine candidates that can be administered either as viral particles or as infectious genomes launched by DNA. IMPORTANCE: Similar to other infectious diseases, the best means of preventing CHIKV infection would be by vaccination using an attenuated vaccine platform which preferably raises protective immunity after a single immunization. However, the attenuated CHIKV vaccine candidates developed to date rely on a small number of attenuating point mutations and are at risk of being unstable or even sensitive to reversion. We report here the construction and preclinical evaluation of novel CHIKV vaccine candidates that have been attenuated by introducing large deletions. The resulting mutants proved to be genetically stable, attenuated, highly immunogenic, and able to confer durable immunity after a single immunization. Moreover, these mutants can be administered either as viral particles or as DNA-launched infectious genomes, enabling evaluation of the most feasible vaccine modality for a certain setting. These CHIKV mutants could represent stable and efficient vaccine candidates against CHIKV.


Asunto(s)
Infecciones por Alphavirus/inmunología , Virus Chikungunya/inmunología , Vacunas Atenuadas/inmunología , Vacunas Virales/inmunología , Infecciones por Alphavirus/prevención & control , Infecciones por Alphavirus/virología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Fiebre Chikungunya , Virus Chikungunya/genética , Femenino , Orden Génico , Genoma Viral , Inmunidad Celular , Inmunización , Inmunización Secundaria , Ratones , Ratones Endogámicos C57BL , Mutación , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética , Proteínas Virales/genética , Proteínas Virales/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...