Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Biotechnol ; 41(10): 1457-1464, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36747096

RESUMEN

DNA comprises molecular information stored in genetic and epigenetic bases, both of which are vital to our understanding of biology. Most DNA sequencing approaches address either genetics or epigenetics and thus capture incomplete information. Methods widely used to detect epigenetic DNA bases fail to capture common C-to-T mutations or distinguish 5-methylcytosine from 5-hydroxymethylcytosine. We present a single base-resolution sequencing methodology that sequences complete genetics and the two most common cytosine modifications in a single workflow. DNA is copied and bases are enzymatically converted. Coupled decoding of bases across the original and copy strand provides a phased digital readout. Methods are demonstrated on human genomic DNA and cell-free DNA from a blood sample of a patient with cancer. The approach is accurate, requires low DNA input and has a simple workflow and analysis pipeline. Simultaneous, phased reading of genetic and epigenetic bases provides a more complete picture of the information stored in genomes and has applications throughout biomedicine.

2.
Sci Rep ; 12(1): 16566, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36195648

RESUMEN

Early detection of cancer will improve survival rates. The blood biomarker 5-hydroxymethylcytosine has been shown to discriminate cancer. In a large covariate-controlled study of over two thousand individual blood samples, we created, tested and explored the properties of a 5-hydroxymethylcytosine-based classifier to detect colorectal cancer (CRC). In an independent validation sample set, the classifier discriminated CRC samples from controls with an area under the receiver operating characteristic curve (AUC) of 90% (95% CI [87, 93]). Sensitivity was 55% at 95% specificity. Performance was similar for early stage 1 (AUC 89%; 95% CI [83, 94]) and late stage 4 CRC (AUC 94%; 95% CI [89, 98]). The classifier could detect CRC even when the proportion of tumor DNA in blood was undetectable by other methods. Expanding the classifier to include information about cell-free DNA fragment size and abundance across the genome led to gains in sensitivity (63% at 95% specificity), with similar overall performance (AUC 91%; 95% CI [89, 94]). We confirm that 5-hydroxymethylcytosine can be used to detect CRC, even in early-stage disease. Therefore, the inclusion of 5-hydroxymethylcytosine in multianalyte testing could improve sensitivity for the detection of early-stage cancer.


Asunto(s)
Ácidos Nucleicos Libres de Células , Neoplasias Colorrectales , Biomarcadores de Tumor/genética , Ácidos Nucleicos Libres de Células/genética , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , ADN/genética , Detección Precoz del Cáncer/métodos , Humanos , Sensibilidad y Especificidad
3.
Elife ; 92020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32773034

RESUMEN

Strains of the influenza virus form coherent global populations, yet exist at the level of single infections in individual hosts. The relationship between these scales is a critical topic for understanding viral evolution. Here we investigate the within-host relationship between selection and the stochastic effects of genetic drift, estimating an effective population size of infection Ne for influenza infection. Examining whole-genome sequence data describing a chronic case of influenza B in a severely immunocompromised child we infer an Ne of 2.5 × 107 (95% confidence range 1.0 × 107 to 9.0 × 107) suggesting that genetic drift is of minimal importance during an established influenza infection. Our result, supported by data from influenza A infection, suggests that positive selection during within-host infection is primarily limited by the typically short period of infection. Atypically long infections may have a disproportionate influence upon global patterns of viral evolution.


Asunto(s)
Flujo Genético , Genoma Viral , Virus de la Influenza B/fisiología , Gripe Humana/virología , Preescolar , Humanos , Huésped Inmunocomprometido , Lactante , Virus de la Influenza B/genética , Densidad de Población , Selección Genética , Procesos Estocásticos , Secuenciación Completa del Genoma
4.
J Virol ; 94(13)2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32295920

RESUMEN

The transmission bottleneck is defined as the number of viral particles that transmit from one host to establish an infection in another. Genome sequence data have been used to evaluate the size of the transmission bottleneck between humans infected with the influenza virus; however, the methods used to make these estimates have some limitations. Specifically, viral allele frequencies, which form the basis of many calculations, may not fully capture a process which involves the transmission of entire viral genomes. Here, we set out a novel approach for inferring viral transmission bottlenecks; our method combines an algorithm for haplotype reconstruction with maximum likelihood methods for bottleneck inference. This approach allows for rapid calculation and performs well when applied to data from simulated transmission events; errors in the haplotype reconstruction step did not adversely affect inferences of the population bottleneck. Applied to data from a previous household transmission study of influenza A infection, we confirm the result that the majority of transmission events involve a small number of viruses, albeit with slightly looser bottlenecks being inferred, with between 1 and 13 particles transmitted in the majority of cases. While influenza A transmission involves a tight population bottleneck, the bottleneck is not so tight as to universally prevent the transmission of within-host viral diversity.IMPORTANCE Viral populations undergo a repeated cycle of within-host growth followed by transmission. Viral evolution is affected by each stage of this cycle. The number of viral particles transmitted from one host to another, known as the transmission bottleneck, is an important factor in determining how the evolutionary dynamics of the population play out, restricting the extent to which the evolved diversity of the population can be passed from one host to another. Previous study of viral sequence data has suggested that the transmission bottleneck size for influenza A transmission between human hosts is small. Reevaluating these data using a novel and improved method, we largely confirm this result, albeit that we infer a slightly higher bottleneck size in some cases, of between 1 and 13 virions. While a tight bottleneck operates in human influenza transmission, it is not extreme in nature; some diversity can be meaningfully retained between hosts.


Asunto(s)
Virus de la Influenza A/genética , Gripe Humana/transmisión , Análisis de Secuencia de ADN/métodos , Evolución Molecular , Variación Genética/genética , Genoma Viral/genética , Haplotipos/genética , Humanos , Virus de la Influenza A/metabolismo , Gripe Humana/genética , Modelos Teóricos , Virus/genética
5.
Clin Infect Dis ; 71(7): e191-e194, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-32124919

RESUMEN

A combination of favipiravir and zanamivir successfully cleared influenza B infection in a child who had undergone bone marrow transplant for X-linked severe combined immunodeficiency, with no recovery of T lymphocytes. Deep sequencing of viral samples illuminated the within-host dynamics of infection, demonstrating the effectiveness of favipiravir in this case.


Asunto(s)
Gripe Humana , Zanamivir , Amidas , Antivirales/uso terapéutico , Niño , Humanos , Gripe Humana/tratamiento farmacológico , Pirazinas/uso terapéutico , Zanamivir/uso terapéutico
6.
PLoS Genet ; 14(10): e1007718, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30325921

RESUMEN

Transmission between hosts is a critical part of the viral lifecycle. Recent studies of viral transmission have used genome sequence data to evaluate the number of particles transmitted between hosts, and the role of selection as it operates during the transmission process. However, the interpretation of sequence data describing transmission events is a challenging task. We here present a novel and comprehensive framework for using short-read sequence data to understand viral transmission events, designed for influenza virus, but adaptable to other viral species. Our approach solves multiple shortcomings of previous methods for this purpose; for example, we consider transmission as an event involving whole viruses, rather than sets of independent alleles. We demonstrate how selection during transmission and noisy sequence data may each affect naive inferences of the population bottleneck, accounting for these in our framework so as to achieve a correct inference. We identify circumstances in which selection for increased viral transmission may or may not be identified from data. Applying our method to experimental data in which transmission occurs in the presence of strong selection, we show that our framework grants a more quantitative insight into transmission events than previous approaches, inferring the bottleneck in a manner that accounts for selection, both for within-host virulence, and for inherent viral transmissibility. Our work provides new opportunities for studying transmission processes in influenza, and by extension, in other infectious diseases.


Asunto(s)
Genética de Población/métodos , Análisis de Secuencia de ADN/métodos , Transmisión de Enfermedad Infecciosa/estadística & datos numéricos , Genoma/genética , Humanos , Gripe Humana/genética , Gripe Humana/transmisión , Gripe Humana/virología , Modelos Teóricos , Virus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...