Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Chem Biol ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514884

RESUMEN

Protein ubiquitylation controls diverse processes within eukaryotic cells, including protein degradation, and is often dysregulated in disease. Moreover, small-molecule degraders that redirect ubiquitylation activities toward disease targets are an emerging and promising therapeutic class. Over 600 E3 ubiquitin ligases are expressed in humans, but their substrates remain largely elusive, necessitating the development of new methods for their discovery. Here we report the development of E3-substrate tagging by ubiquitin biotinylation (E-STUB), a ubiquitin-specific proximity labeling method that biotinylates ubiquitylated substrates in proximity to an E3 ligase of interest. E-STUB accurately identifies the direct ubiquitylated targets of protein degraders, including collateral targets and ubiquitylation events that do not lead to substrate degradation. It also detects known substrates of E3 ligase CRBN and VHL with high specificity. With the ability to elucidate proximal ubiquitylation events, E-STUB may facilitate the development of proximity-inducing therapeutics and act as a generalizable method for E3-substrate mapping.

3.
bioRxiv ; 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37873358

RESUMEN

Small molecules that can induce protein degradation by inducing proximity between a desired target and an E3 ligase have the potential to greatly expand the number of proteins that can be manipulated pharmacologically. Current strategies for targeted protein degradation are mostly limited in their target scope to proteins with preexisting ligands. Alternate modalities such as molecular glues, as exemplified by the glutarimide class of ligands for the CUL4CRBN ligase, have been mostly discovered serendipitously. We recently reported a trans-labelling covalent glue mechanism which we named 'Template-assisted covalent modification', where an electrophile decorated small molecule binder of BRD4 was effectively delivered to a cysteine residue on an E3 ligase DCAF16 as a consequence of a BRD4-DCAF16 protein-protein interaction. Herein, we report our medicinal chemistry efforts to evaluate how various electrophilic modifications to the BRD4 binder, JQ1, affect DCAF16 trans-labeling and subsequent BRD4 degradation efficiency. We discovered a decent correlation between the ability of the electrophilic small molecule to induce ternary complex formation between BRD4 and DCAF16 with its ability to induce BRD4 degradation. Moreover, we show that a more solvent-exposed warhead presentation is optimal for DCAF16 recruitment and subsequent BRD4 degradation. Unlike the sensitivity of CUL4CRBN glue degraders to chemical modifications, the diversity of covalent attachments in this class of BRD4 glue degraders suggests a high tolerance and tunability for the BRD4-DCAF16 interaction. This offers a potential new avenue for a rational design of covalent glue degraders by introducing covalent warheads to known binders.

4.
Mol Cell ; 83(15): 2753-2767.e10, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37478846

RESUMEN

Nuclear hormone receptors (NRs) are ligand-binding transcription factors that are widely targeted therapeutically. Agonist binding triggers NR activation and subsequent degradation by unknown ligand-dependent ubiquitin ligase machinery. NR degradation is critical for therapeutic efficacy in malignancies that are driven by retinoic acid and estrogen receptors. Here, we demonstrate the ubiquitin ligase UBR5 drives degradation of multiple agonist-bound NRs, including the retinoic acid receptor alpha (RARA), retinoid x receptor alpha (RXRA), glucocorticoid, estrogen, liver-X, progesterone, and vitamin D receptors. We present the high-resolution cryo-EMstructure of full-length human UBR5 and a negative stain model representing its interaction with RARA/RXRA. Agonist ligands induce sequential, mutually exclusive recruitment of nuclear coactivators (NCOAs) and UBR5 to chromatin to regulate transcriptional networks. Other pharmacological ligands such as selective estrogen receptor degraders (SERDs) degrade their receptors through differential recruitment of UBR5 or RNF111. We establish the UBR5 transcriptional regulatory hub as a common mediator and regulator of NR-induced transcription.


Asunto(s)
Cromatina , Factores de Transcripción , Humanos , Ligandos , Cromatina/genética , Factores de Transcripción/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Ubiquitinas , Ubiquitina-Proteína Ligasas/genética
5.
bioRxiv ; 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36824856

RESUMEN

Small molecules that induce protein-protein interactions to exert proximity-driven pharmacology such as targeted protein degradation are a powerful class of therapeutics1-3. Molecular glues are of particular interest given their favorable size and chemical properties and represent the only clinically approved degrader drugs4-6. The discovery and development of molecular glues for novel targets, however, remains challenging. Covalent strategies could in principle facilitate molecular glue discovery by stabilizing the neo-protein interfaces. Here, we present structural and mechanistic studies that define a trans-labeling covalent molecular glue mechanism, which we term "template-assisted covalent modification". We found that a novel series of BRD4 molecular glue degraders act by recruiting the CUL4DCAF16 ligase to the second bromodomain of BRD4 (BRD4BD2). BRD4BD2, in complex with DCAF16, serves as a structural template to facilitate covalent modification of DCAF16, which stabilizes the BRD4-degrader-DCAF16 ternary complex formation and facilitates BRD4 degradation. A 2.2 Å cryo-electron microscopy structure of the ternary complex demonstrates that DCAF16 and BRD4BD2 have pre-existing structural complementarity which optimally orients the reactive moiety of the degrader for DCAF16Cys58 covalent modification. Systematic mutagenesis of both DCAF16 and BRD4BD2 revealed that the loop conformation around BRD4His437, rather than specific side chains, is critical for stable interaction with DCAF16 and BD2 selectivity. Together our work establishes "template-assisted covalent modification" as a mechanism for covalent molecular glues, which opens a new path to proximity driven pharmacology.

6.
J Biol Chem ; 298(10): 102484, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36108743

RESUMEN

The IL-3, IL-5, and GM-CSF family of cytokines play an essential role in the growth, differentiation, and effector functions of multiple hematopoietic cell types. Receptors in this family are composed of cytokine-specific α chains and a common ß chain (CSF2RB), responsible for the majority of downstream signaling. CSF2RB abundance and stability influence the magnitude of the cellular response to cytokine stimulation, but the exact mechanisms of regulation are not well understood. Here, we use genetic screens in multiple cellular contexts and cytokine conditions to identify STUB1, an E3 ubiquitin ligase, and CHIC2 as regulators of CSF2RB ubiquitination and protein stability. We demonstrate that Stub1 and Chic2 form a complex that binds Csf2rb and that genetic inactivation of either Stub1 or Chic2 leads to reduced ubiquitination of Csf2rb. The effects of Stub1 and Chic2 on Csf2rb were greatest at reduced cytokine concentrations, suggesting that Stub1/Chic2-mediated regulation of Csf2rb is a mechanism of reducing cell surface accumulation when cytokine levels are low. Our study uncovers a mechanism of CSF2RB regulation through ubiquitination and lysosomal degradation and describes a role for CHIC2 in the regulation of a cytokine receptor.


Asunto(s)
Subunidad beta Común de los Receptores de Citocinas , Ubiquitina-Proteína Ligasas , Subunidad beta Común de los Receptores de Citocinas/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Interleucina-3/genética , Interleucina-3/metabolismo , Interleucina-5/genética , Interleucina-5/metabolismo , Estabilidad Proteica , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
7.
Biochemistry ; 60(34): 2593-2609, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34411482

RESUMEN

SHP2 is a protein tyrosine phosphatase that plays a critical role in the full activation of the Ras-MAPK pathway upon stimulation of receptor tyrosine kinases, which are frequently amplified or mutationally activated in human cancer. In addition, activating mutations in SHP2 result in developmental disorders and hematologic malignancies. Several allosteric inhibitors have been developed for SHP2 and are currently in clinical trials. Here, we report the development and evaluation of a SHP2 PROTAC created by conjugating RMC-4550 with pomalidomide using a PEG linker. This molecule is highly selective for SHP2, induces degradation of SHP2 in leukemic cells at submicromolar concentrations, inhibits MAPK signaling, and suppresses cancer cell growth. SHP2 PROTACs serve as an alternative strategy for targeting ERK-dependent cancers and are useful tools alongside allosteric inhibitors for dissecting the mechanisms by which SHP2 exerts its oncogenic activity.


Asunto(s)
Antineoplásicos/farmacología , Metanol/análogos & derivados , Neoplasias/tratamiento farmacológico , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , Pirazinas/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Humanos , Terapia Molecular Dirigida , Mutación , Neoplasias/metabolismo , Neoplasias/patología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteolisis , Transducción de Señal
8.
Mol Cell Proteomics ; 20: 100019, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33268465

RESUMEN

Cullin RING E3 ligases (CRLs) ubiquitylate hundreds of important cellular substrates. Here we have assembled and purified the Ankyrin repeat and SOCS Box protein 9 CUL5 RBX2 ligase (ASB9-CRL) in vitro and show how it ubiquitylates one of its substrates, CKB. CRLs occasionally collaborate with RING between RING E3 ligases (RBRLs), and indeed, mass spectrometry analysis showed that CKB is specifically ubiquitylated by the ASB9-CRL-ARIH2-UBE2L3 complex. Addition of other E2s such as UBE2R1 or UBE2D2 contributes to polyubiquitylation but does not alter the sites of CKB ubiquitylation. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) analysis revealed that CUL5 neddylation allosterically exposes its ARIH2 binding site, promoting high-affinity binding, and it also sequesters the NEDD8 E2 (UBE2F) binding site on RBX2. Once bound, ARIH2 helices near the Ariadne domain active site are exposed, presumably relieving its autoinhibition. These results allow us to propose a model of how neddylation activates ASB-CRLs to ubiquitylate their substrates.


Asunto(s)
Proteínas Cullin/metabolismo , Proteína NEDD8/metabolismo , Proteínas Cullin/química , Escherichia coli/genética , Proteína NEDD8/química , Proteínas Supresoras de la Señalización de Citocinas/química , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
9.
Nat Commun ; 11(1): 2866, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32513959

RESUMEN

The Cullin 5 (CUL5) Ring E3 ligase uses adaptors Elongins B and C (ELOB/C) to bind different SOCS-box-containing substrate receptors, determining the substrate specificity of the ligase. The 18-member ankyrin and SOCS box (ASB) family is the largest substrate receptor family. Here we report cryo-EM data for the substrate, creatine kinase (CKB) bound to ASB9-ELOB/C, and for full-length CUL5 bound to the RING protein, RBX2, which binds various E2s. To date, no full structures are available either for a substrate-bound ASB nor for CUL5. Hydrogen-deuterium exchange (HDX-MS) mapped onto a full structural model of the ligase revealed long-range allostery extending from the substrate through CUL5. We propose a revised allosteric mechanism for how CUL-E3 ligases function. ASB9 and CUL5 behave as rigid rods, connected through a hinge provided by ELOB/C transmitting long-range allosteric crosstalk from the substrate through CUL5 to the RBX2 flexible linker.


Asunto(s)
Creatina Quinasa/metabolismo , Microscopía por Crioelectrón , Elonguina/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/química , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Regulación Alostérica , Creatina Quinasa/ultraestructura , Proteínas Cullin/química , Proteínas Cullin/metabolismo , Elonguina/ultraestructura , Humanos , Modelos Moleculares , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato , Proteínas Supresoras de la Señalización de Citocinas/ultraestructura , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo
10.
Mol Cell Proteomics ; 18(12): 2516-2523, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31594786

RESUMEN

Amide hydrogen-deuterium exchange mass spectrometry (HDX-MS) has become widely popular for mapping protein-ligand interfaces, for understanding protein-protein interactions, and for discovering dynamic allostery. Several platforms are now available which provide large data sets of amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) data. Although many of these platforms provide some down-stream processing, a comprehensive software that provides the most commonly used down-stream processing tools such as automatic back-exchange correction options, analysis of overlapping peptides, calculations of relative deuterium uptake into regions of the protein after such corrections, rigorous statistical analysis of the significance of uptake differences, and generation of high quality figures for data presentation is not yet available. Here we describe the Deuterium Exchange Correction and Analysis (DECA) software package, which provides all these downstream processing options for data from the most popular mass spectrometry platforms. The major functions of the software are demonstrated on sample data.


Asunto(s)
Deuterio/metabolismo , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio/métodos , Programas Informáticos , Conjuntos de Datos como Asunto , Procesamiento Automatizado de Datos , Interfaz Usuario-Computador
11.
Nat Commun ; 8(1): 1171, 2017 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-29079793

RESUMEN

Small ubiquitin-like modifier (SUMO) modification regulates numerous cellular processes. Unlike ubiquitin, detection of endogenous SUMOylated proteins is limited by the lack of naturally occurring protease sites in the C-terminal tail of SUMO proteins. Proteome-wide detection of SUMOylation sites on target proteins typically requires ectopic expression of mutant SUMOs with introduced tryptic sites. Here, we report a method for proteome-wide, site-level detection of endogenous SUMOylation that uses α-lytic protease, WaLP. WaLP digestion of SUMOylated proteins generates peptides containing SUMO-remnant diglycyl-lysine (KGG) at the site of SUMO modification. Using previously developed immuno-affinity isolation of KGG-containing peptides followed by mass spectrometry, we identified 1209 unique endogenous SUMO modification sites. We also demonstrate the impact of proteasome inhibition on ubiquitin and SUMO-modified proteomes using parallel quantitation of ubiquitylated and SUMOylated peptides. This methodological advancement enables determination of endogenous SUMOylated proteins under completely native conditions.


Asunto(s)
Serina Endopeptidasas/química , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Células HeLa , Humanos , Lisina/química , Espectrometría de Masas , Mutación , Péptidos/química , Unión Proteica , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Proteoma , Proteómica , Transducción de Señal , Sumoilación , Tripsina/química , Ubiquitina/química
12.
J Virol ; 87(7): 3815-27, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23345508

RESUMEN

Nairoviruses are responsible for numerous diseases that affect both humans and animal. Recent work has implicated the viral ovarian tumor domain (vOTU) as a possible nairovirus virulence factor due to its ability to edit ubiquitin (Ub) bound to cellular proteins and, at least in the case of Crimean-Congo hemorrhagic fever virus (CCHFV), to cleave the Ub-like protein interferon-stimulated gene 15 (ISG15), a protein involved in the regulation of host immunity. The prospective roles of vOTUs in immune evasion have generated several questions concerning whether vOTUs act through a preserved specificity for Ub- and ISG15-conjugated proteins and where that specificity may originate. To gain insight into the substrate specificity of vOTUs, enzymological studies were conducted on vOTUs from Dugbe, CCHFV, and Erve nairoviruses. These studies revealed that vOTUs originating from different nairoviruses display a significant divergence in their preference toward Ub and ISG15. In addition, a recently identified vOTU from turnip yellow mosaic tymovirus was evaluated to elucidate any possible similarities between vOTUs originating from different viral families. Although possessing a similar preference for certain polymeric Ub moieties, its activity toward Ub in general was significantly less then those of nairoviruses. Lastly, the X-ray crystallographic structure of the vOTU from the Dugbe nairovirus was obtained in complex with Ub to reveal structural commonalities of vOTUs originating from nairoviruses. The structure suggests that divergences between nairovirus vOTUs specificity originate at the primary structural level. Comparison of this structure to that originating from CCHFV identified key residues that infer the substrate specificity of vOTUs.


Asunto(s)
Citocinas/metabolismo , Modelos Moleculares , Nairovirus/enzimología , Péptido Hidrolasas/metabolismo , Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Proteínas Virales/metabolismo , Factores de Virulencia/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Ensayo de Cambio de Movilidad Electroforética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Nairovirus/metabolismo , Nairovirus/patogenicidad , Péptido Hidrolasas/química , Péptido Hidrolasas/genética , Conformación Proteica , Alineación de Secuencia , Especificidad de la Especie , Especificidad por Sustrato , Proteínas Virales/química , Factores de Virulencia/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...