Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Math Biol ; 86(1): 11, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36478092

RESUMEN

Recent progress in nanotechnology-enabled sensors that can be placed inside of living plants has shown that it is possible to relay and record real-time chemical signaling stimulated by various abiotic and biotic stresses. The mathematical form of the resulting local reactive oxygen species (ROS) wave released upon mechanical perturbation of plant leaves appears to be conserved across a large number of species, and produces a distinct waveform from other stresses including light, heat and pathogen-associated molecular pattern (PAMP)-induced stresses. Herein, we develop a quantitative theory of the local ROS signaling waveform resulting from mechanical stress in planta. We show that nonlinear, autocatalytic production and Fickian diffusion of H2O2 followed by first order decay well describes the spatial and temporal properties of the waveform. The reaction-diffusion system is analyzed in terms of a new approximate solution that we introduce for such problems based on a single term logistic function ansatz. The theory is able to describe experimental ROS waveforms and degradation dynamics such that species-dependent dimensionless wave velocities are revealed, corresponding to subtle changes in higher moments of the waveform through an apparently conserved signaling mechanism overall. This theory has utility in potentially decoding other stress signaling waveforms for light, heat and PAMP-induced stresses that are similarly under investigation. The approximate solution may also find use in applied agricultural sensing, facilitating the connection between measured waveform and plant physiology.


Asunto(s)
Peróxido de Hidrógeno , Estrés Mecánico
2.
J Am Chem Soc ; 144(30): 13623-13633, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35877974

RESUMEN

Photocatalytic conversion of CO2 to generate high-value and renewable chemical fuels and feedstock presents a sustainable and renewable alternative to fossil fuels and petrochemicals. Currently, there is a dearth of kinetic understanding to inform better catalyst design, especially at uniform reaction conditions across diverse catalytic species. In this work, we investigate 12 active, stable, and unique but common nanoparticle photocatalysts for CO2 reduction at room temperature and low partial pressure in aqueous phase: TiO2, SnO2, and SiC deposited with silver, gold, and platinum. Our analysis reveals a single consistent chemical kinetic mechanism, which accurately describes the yield and selectivity of all single-carbon containing (C1) products obtained in spite of the diverse catalysts employed. Formaldehyde is predicted as the first product in the reaction network and we report, to the best of our knowledge, the highest selectivity to date toward formaldehyde during CO2 photoreduction when compared against all other C1 products (∼80%) albeit at low CO2 conversion (<0.5 µmol gcat-1 h-1, <16.8 nmol m-2 h-1). Further, we observe a volcano-like relationship between the electron-transfer rate of a given photocatalyst for CO2 reduction and the net rate at which reduced products are produced in the reaction mixture taking into account unfavorable product oxidation. We establish an empirical upper limit for the maximum rate of production of CO2 reduction products for any nanoparticle photocatalyst in the absence of a hole-scavenging agent. These results form the basis for the design and optimization of the next generation of highly efficiency and active photocatalysts for CO2 reduction.


Asunto(s)
Dióxido de Carbono , Nanopartículas , Catálisis , Formaldehído , Platino (Metal)
3.
Nature ; 602(7895): 91-95, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35110762

RESUMEN

Polymers that extend covalently in two dimensions have attracted recent attention1,2 as a means of combining the mechanical strength and in-plane energy conduction of conventional two-dimensional (2D) materials3,4 with the low densities, synthetic processability and organic composition of their one-dimensional counterparts. Efforts so far have proven successful in forms that do not allow full realization of these properties, such as polymerization at flat interfaces5,6 or fixation of monomers in immobilized lattices7-9. Another frequently employed synthetic approach is to introduce microscopic reversibility, at the cost of bond stability, to achieve 2D crystals after extensive error correction10,11. Here we demonstrate a homogenous 2D irreversible polycondensation that results in a covalently bonded 2D polymeric material that is chemically stable and highly processable. Further processing yields highly oriented, free-standing films that have a 2D elastic modulus and yield strength of 12.7 ± 3.8 gigapascals and 488 ± 57 megapascals, respectively. This synthetic route provides opportunities for 2D materials in applications ranging from composite structures to barrier coating materials.

4.
J Phys Chem B ; 126(1): 347-354, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-34962804

RESUMEN

Nanoparticle surfaces, such as cylindrical nanowires and carbon nanotubes, are commonly coated with adsorbed polymer corona phases to impart solution stabilization and to control molecular interactions. These adsorbed polymer molecules (biological or otherwise), also known as the corona phase, are critical to engineering particle and molecular interactions. However, the prediction of its structure and the corresponding properties remains an unresolved problem in polymer physics. In this work, we construct a Hamiltonian describing the adsorption of an otherwise linear polymer to the surface of a cylindrical nanorod in the form of an integral equation summing up the energetic contributions corresponding to polymer bending, confinement, solvation, and electrostatics. We introduce an approximate functional that allows for the solution of the minimum energy configuration in the strongly bound limit. The functional is shown to predict the pitch and surface area of observed helical corona phases in the literature based on the surface binding energy and persistence length alone. This approximate functional also predicts and quantitatively describes the recently observed ionic strength-mediated phase transitions of charged polymer corona at carbon nanotube surfaces. The Hamiltonian and the approximate functional provide the first theoretical link between the polymer's mechanical and chemical properties and the resulting adsorbed phase configuration and therefore should find widespread utility in predicting corona phase structures around anisotropic nanoparticles.


Asunto(s)
Nanopartículas , Nanotubos de Carbono , Corona de Proteínas , Adsorción , Concentración Osmolar , Polímeros
5.
AIChE J ; 67(6): e17250, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33785962

RESUMEN

While facial coverings reduce the spread of SARS-CoV-2 by viral filtration, masks capable of viral inactivation by heating can provide a complementary method to limit transmission. Inspired by reverse-flow chemical reactors, we introduce a new virucidal face mask concept driven by the oscillatory flow of human breath. The governing heat and mass transport equations are solved to evaluate virus and CO2 transport. Given limits imposed by the kinetics of SARS-CoV-2 thermal inactivation, human breath, safety, and comfort, heated masks may inactivate SARS-CoV-2 to medical-grade sterility. We detail one design, with a volume of 300 ml at 90°C that achieves a 3-log reduction in viral load with minimal impedance within the mask mesh, with partition coefficient around 2. This is the first quantitative analysis of virucidal thermal inactivation within a protective face mask, and addresses a pressing need for new approaches for personal protective equipment during a global pandemic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...