Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 126(4): 042701, 2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33576674

RESUMEN

Proton capture on the excited isomeric state of ^{26}Al strongly influences the abundance of ^{26}Mg ejected in explosive astronomical events and, as such, plays a critical role in determining the initial content of radiogenic ^{26}Al in presolar grains. This reaction also affects the temperature range for thermal equilibrium between the ground and isomeric levels. We present a novel technique, which exploits the isospin symmetry of the nuclear force, to address the long-standing challenge of determining proton-capture rates on excited nuclear levels. Such a technique has in-built tests that strongly support its veracity and, for the first time, we have experimentally constrained the strengths of resonances that dominate the astrophysical ^{26m}Al(p,γ)^{27}Si reaction. These constraints demonstrate that the rate is at least a factor ∼8 lower than previously expected, indicating an increase in the stellar production of ^{26}Mg and a possible need to reinvestigate sensitivity studies involving the thermal equilibration of ^{26}Al.

2.
Phys Rev Lett ; 124(15): 152501, 2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32357059

RESUMEN

The lifetimes of the first excited 2^{+} states in the N=Z nuclei ^{80}Zr, ^{78}Y, and ^{76}Sr have been measured using the γ-ray line shape method following population via nucleon-knockout reactions from intermediate-energy rare-isotope beams. The extracted reduced electromagnetic transition strengths yield new information on where the collectivity is maximized and provide evidence for a significant, and as yet unexplained, odd-odd vs even-even staggering in the observed values. The experimental results are analyzed in the context of state-of-the-art nuclear density-functional model calculations.

3.
Phys Rev Lett ; 122(22): 222501, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-31283300

RESUMEN

A more detailed test of the implementation of nuclear forces that drive shell evolution in the pivotal nucleus ^{42}Si-going beyond earlier comparisons of excited-state energies-is important. The two leading shell-model effective interactions, SDPF-MU and SDPF-U-Si, both of which reproduce the low-lying ^{42}Si(2_{1}^{+}) energy, but whose predictions for other observables differ significantly, are interrogated by the population of states in neutron-rich ^{42}Si with a one-proton removal reaction from ^{43}P projectiles at 81 MeV/nucleon. The measured cross sections to the individual ^{42}Si final states are compared to calculations that combine eikonal reaction dynamics with these shell-model nuclear structure overlaps. The differences in the two shell-model descriptions are examined and linked to predicted low-lying excited 0^{+} states and shape coexistence. Based on the present data, which are in better agreement with the SDPF-MU calculations, the state observed at 2150(13) keV in ^{42}Si is proposed to be the (0_{2}^{+}) level.

4.
Phys Rev Lett ; 121(1): 012501, 2018 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-30028163

RESUMEN

Lifetime measurements of excited states in the neutron-rich nucleus ^{43}S were performed by applying the recoil-distance method on fast rare-isotope beams in conjunction with the Gamma-Ray Energy Tracking In-beam Nuclear Array. The new data based on γγ coincidences and lifetime measurements resolve a doublet of (3/2^{-}) and (5/2^{-}) states at low excitation energies. Results were compared to the π(sd)-ν(pf) shell model and antisymmetrized molecular dynamics calculations. The consistency with the theoretical calculations identifies a possible appearance of three coexisting bands near the ground state of ^{43}S: the K^{π}=1/2^{-} band built on a prolate-deformed ground state, a band built on an isomer with a 1f_{7/2}^{-1} character, and a suggested excited band built on a newly discovered doublet state. The latter further confirms the collapse of the N=28 shell closure in the neutron-rich region.

5.
Phys Rev Lett ; 121(26): 262501, 2018 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-30636164

RESUMEN

An enhanced low-energy electric dipole (E1) strength is identified for the weakly bound excited states of the neutron-rich isotope ^{27}Ne. The Doppler-shift lifetime measurements employing a combination of the γ-ray tracking array GRETINA, the plunger device, and the S800 spectrograph determine the lower limit of 0.030 e^{2} fm^{2} or 0.052 W.u. for the 1/2^{+}→3/2^{-} E1 transition in ^{27}Ne, representing one of the strongest E1 strengths observed among the bound discrete states in this mass region. This value is at least 30 times larger than that measured for the 3/2^{-} decay to the 3/2_{gs}^{+} ground state. A comparison of the present results to large-scale shell-model calculations points to an important role of core excitations and deformation in the observed E1 enhancement, suggesting a novel example of the electric dipole modes manifested in weakly bound deformed systems.

6.
Phys Rev Lett ; 118(17): 172501, 2017 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-28498679

RESUMEN

The (^{10}Be,^{10}B^{*}[1.74 MeV]) charge-exchange reaction at 100 AMeV is presented as a new probe for isolating the isovector (ΔT=1) nonspin-transfer (ΔS=0) response of nuclei, with ^{28}Si being the first nucleus studied. By using a secondary ^{10}Be beam produced by fast fragmentation of ^{18}O nuclei at the NSCL Coupled Cyclotron Facility, applying the dispersion-matching technique with the S800 magnetic spectrometer to determine the excitation energy in ^{28}Al, and performing high-resolution γ-ray tracking with the Gamma-Ray Energy Tracking In-beam Nuclear Array (GRETINA) to identify the 1022-keV γ ray associated with the decay from the 1.74-MeV T=1 isobaric analog state in ^{10}B, a ΔS=0 excitation-energy spectrum in ^{28}Al was extracted. Monopole and dipole contributions were determined through a multipole-decomposition analysis, and the isovector giant dipole resonance and isovector giant monopole resonance (IVGMR) were identified. The results show that this probe is a powerful tool for studying the elusive IVGMR, which is of interest for performing stringent tests of modern density functional theories at high excitation energies and for constraining the bulk properties of nuclei and nuclear matter. The extracted distributions were compared with theoretical calculations based on the normal-modes formalism and the proton-neutron relativistic time-blocking approximation. Calculated cross sections based on these strengths underestimate the data by about a factor of 2, which likely indicates deficiencies in the reaction calculations based on the distorted wave Born approximation.

7.
Phys Rev Lett ; 113(3): 032502, 2014 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-25083636

RESUMEN

An approach is presented to experimentally constrain previously unreachable (p, γ) reaction rates on nuclei far from stability in the astrophysical rp process. Energies of all critical resonances in the (57)Cu(p,γ)(58)Zn reaction are deduced by populating states in (58)Zn with a (d, n) reaction in inverse kinematics at 75 MeV/u, and detecting γ-ray-recoil coincidences with the state-of-the-art γ-ray tracking array GRETINA and the S800 spectrograph at the National Superconducting Cyclotron Laboratory. The results reduce the uncertainty in the (57)Cu(p,γ) reaction rate by several orders of magnitude. The effective lifetime of (56)Ni, an important waiting point in the rp process in x-ray bursts, can now be determined entirely from experimentally constrained reaction rates.

8.
Phys Rev Lett ; 112(25): 252501, 2014 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-25014806

RESUMEN

The Gamow-Teller strength in the ß(+) direction to (46)Sc was extracted via the (46)Ti(t,(3)He + γ) reaction at 115 MeV/u. The γ-ray coincidences served to precisely measure the very weak Gamow-Teller transition to a final state at 991 keV. Although this transition is weak, it is crucial for accurately estimating electron-capture rates in astrophysical scenarios with relatively low stellar densities and temperatures, such as presupernova stellar evolution. Shell-model calculations with different effective interactions in the pf shell-model space do not reproduce the experimental Gamow-Teller strengths, which is likely due to sd-shell admixtures. Calculations in the quasiparticle random phase approximation that are often used in astrophysical simulations also fail to reproduce the experimental Gamow-Teller strength distribution, leading to strongly overestimated electron-capture rates. Because reliable theoretical predictions of Gamow-Teller strengths are important for providing astrophysical electron-capture reaction rates for a broad set of nuclei in the lower pf shell, we conclude that further theoretical improvements are required to match astrophysical needs.

9.
Phys Rev Lett ; 112(11): 112503, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24702356

RESUMEN

Excited states in the neutron-rich N = 38, 36 nuclei (60)Ti and (58)Ti were populated in nucleon-removal reactions from (61)V projectiles at 90 MeV/nucleon. The γ-ray transitions from such states in these Ti isotopes were detected with the advanced γ-ray tracking array GRETINA and were corrected event by event for large Doppler shifts (v/c ∼ 0.4) using the γ-ray interaction points deduced from online signal decomposition. The new data indicate that a steep decrease in quadrupole collectivity occurs when moving from neutron-rich N = 36, 38 Fe and Cr toward the Ti and Ca isotones. In fact, (58,60)Ti provide some of the most neutron-rich benchmarks accessible today for calculations attempting to determine the structure of the potentially doubly magic nucleus (60)Ca.

10.
Phys Rev Lett ; 112(14): 142502, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24765947

RESUMEN

The transition rates from the yrast 2+ and 4+ states in the self-conjugate 72Kr nucleus were studied via lifetime measurements employing the GRETINA array with a novel application of the recoil-distance method. The large collectivity observed for the 4+→2+ transition suggests a prolate character of the excited states. The reduced collectivity previously reported for the 2+→0+ transition was confirmed. The irregular behavior of collectivity points to the occurrence of a rapid oblate-prolate shape transition in 72Kr, providing stringent tests for advanced theories to describe the shape coexistence and its evolution.

11.
Phys Rev Lett ; 110(15): 152501, 2013 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-25167255

RESUMEN

A new technique was developed to measure the lifetimes of neutron unbound nuclei in the picosecond range. The decay of 26O→24O+n+n was examined as it had been predicted to have an appreciable lifetime due to the unique structure of the neutron-rich oxygen isotopes. The half-life of 26O was extracted as 4.5(-1.5)(+1.1)(stat)±3(syst) ps. This corresponds to 26O having a finite lifetime at an 82% confidence level and, thus, suggests the possibility of two-neutron radioactivity.

12.
Phys Rev Lett ; 108(14): 142503, 2012 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-22540789

RESUMEN

Evidence for the ground state of the neutron-unbound nucleus (26)O was observed for the first time in the single proton-knockout reaction from a 82 MeV/u (27)F beam. Neutrons were measured in coincidence with (24)O fragments. (26)O was determined to be unbound by 150(-150)(+50) keV from the observation of low-energy neutrons. This result agrees with recent shell-model calculations based on microscopic two- and three-nucleon forces.

13.
Phys Rev Lett ; 108(10): 102501, 2012 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-22463404

RESUMEN

We report on the first observation of dineutron emission in the decay of 16Be. A single-proton knockout reaction from a 53 MeV/u 17B beam was used to populate the ground state of 16Be. 16Be is bound with respect to the emission of one neutron and unbound to two-neutron emission. The dineutron character of the decay is evidenced by a small emission angle between the two neutrons. The two-neutron separation energy of 16Be was measured to be 1.35(10) MeV, in good agreement with shell model calculations, using standard interactions for this mass region.

14.
Phys Rev Lett ; 108(3): 032501, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22400733

RESUMEN

The technique of invariant mass spectroscopy has been used to measure, for the first time, the ground state energy of neutron-unbound (28)F, determined to be a resonance in the (27)F+n continuum at 220(50) keV. States in (28)F were populated by the reactions of a 62 MeV/u (29)Ne beam impinging on a 288 mg/cm(2) beryllium target. The measured (28)F ground state energy is in good agreement with USDA/USDB shell model predictions, indicating that pf shell intruder configurations play only a small role in the ground state structure of (28)F and establishing a low-Z boundary of the island of inversion for N=19 isotones.

15.
Phys Rev Lett ; 109(23): 232501, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23368186

RESUMEN

The ground state of (10)He was populated using a 2p2n-removal reaction from a 59 MeV/u (14)Be beam. The decay energy of the three-body system, (8)He+n+n, was measured and a resonance was observed at E=1.60(25) MeV with a 1.8(4) MeV width. This result is in agreement with previous invariant mass spectroscopy measurements, using the (11)Li(-p) reaction, but is inconsistent with recent transfer reaction results. The proposed explanation that the difference, about 500 keV, is due to the effect of the extended halo nature of (11)Li in the one-proton knockout reaction is no longer valid as the present work demonstrates that the discrepancy between the transfer reaction results persists despite using a very different reaction mechanism, (14)Be(-2p2n).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...