Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 14(10)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35625977

RESUMEN

Uterine cervical cancer (CC) is the most common gynecologic malignancy worldwide. Whole-volume radiomic profiling from pelvic MRI may yield prognostic markers for tailoring treatment in CC. However, radiomic profiling relies on manual tumor segmentation which is unfeasible in the clinic. We present a fully automatic method for the 3D segmentation of primary CC lesions using state-of-the-art deep learning (DL) techniques. In 131 CC patients, the primary tumor was manually segmented on T2-weighted MRI by two radiologists (R1, R2). Patients were separated into a train/validation (n = 105) and a test- (n = 26) cohort. The segmentation performance of the DL algorithm compared with R1/R2 was assessed with Dice coefficients (DSCs) and Hausdorff distances (HDs) in the test cohort. The trained DL network retrieved whole-volume tumor segmentations yielding median DSCs of 0.60 and 0.58 for DL compared with R1 (DL-R1) and R2 (DL-R2), respectively, whereas DSC for R1-R2 was 0.78. Agreement for primary tumor volumes was excellent between raters (R1-R2: intraclass correlation coefficient (ICC) = 0.93), but lower for the DL algorithm and the raters (DL-R1: ICC = 0.43; DL-R2: ICC = 0.44). The developed DL algorithm enables the automated estimation of tumor size and primary CC tumor segmentation. However, segmentation agreement between raters is better than that between DL algorithm and raters.

2.
Comput Med Imaging Graph ; 90: 101910, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33862355

RESUMEN

We present a framework for constructing predictive models of cognitive decline from longitudinal MRI examinations, based on mixed effects models and machine learning. We apply the framework to detect conversion from cognitively normal (CN) to mild cognitive impairment (MCI) and from MCI to Alzheimer's disease (AD), using a large collection of subjects sourced from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the Australian Imaging, Biomarkers and Lifestyle Flagship Study of Aging (AIBL). We extract subcortical segmentation and cortical parcellation from corresponding T1-weighted images using FreeSurfer v.6.0, select bilateral 3D regions of interest relevant to neurodegeneration/dementia, and fit their longitudinal volume trajectories using linear mixed effects models. Features describing these model-based trajectories are then used to train an ensemble of machine learning classifiers to distinguish stable CN from converters to MCI, and stable MCI from converters to AD. On separate test sets the models achieved an average of accuracy/precision/recall score of 69/73/60% for converted to MCI and 75/74/77% for converted to AD, illustrating the framework's ability to extract predictive imaging-based biomarkers from routine T1-weighted MRI acquisitions.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/diagnóstico por imagen , Australia , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Neuroimagen
3.
Z Med Phys ; 29(2): 102-127, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30553609

RESUMEN

What has happened in machine learning lately, and what does it mean for the future of medical image analysis? Machine learning has witnessed a tremendous amount of attention over the last few years. The current boom started around 2009 when so-called deep artificial neural networks began outperforming other established models on a number of important benchmarks. Deep neural networks are now the state-of-the-art machine learning models across a variety of areas, from image analysis to natural language processing, and widely deployed in academia and industry. These developments have a huge potential for medical imaging technology, medical data analysis, medical diagnostics and healthcare in general, slowly being realized. We provide a short overview of recent advances and some associated challenges in machine learning applied to medical image processing and image analysis. As this has become a very broad and fast expanding field we will not survey the entire landscape of applications, but put particular focus on deep learning in MRI. Our aim is threefold: (i) give a brief introduction to deep learning with pointers to core references; (ii) indicate how deep learning has been applied to the entire MRI processing chain, from acquisition to image retrieval, from segmentation to disease prediction; (iii) provide a starting point for people interested in experimenting and perhaps contributing to the field of deep learning for medical imaging by pointing out good educational resources, state-of-the-art open-source code, and interesting sources of data and problems related medical imaging.


Asunto(s)
Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...