Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Hum Mol Genet ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747556

RESUMEN

Inflammation biomarkers can provide valuable insight into the role of inflammatory processes in many diseases and conditions. Sequencing based analyses of such biomarkers can also serve as an exemplar of the genetic architecture of quantitative traits. To evaluate the biological insight, which can be provided by a multi-ancestry, whole-genome based association study, we performed a comprehensive analysis of 21 inflammation biomarkers from up to 38 465 individuals with whole-genome sequencing from the Trans-Omics for Precision Medicine (TOPMed) program (with varying sample size by trait, where the minimum sample size was n = 737 for MMP-1). We identified 22 distinct single-variant associations across 6 traits-E-selectin, intercellular adhesion molecule 1, interleukin-6, lipoprotein-associated phospholipase A2 activity and mass, and P-selectin-that remained significant after conditioning on previously identified associations for these inflammatory biomarkers. We further expanded upon known biomarker associations by pairing the single-variant analysis with a rare variant set-based analysis that further identified 19 significant rare variant set-based associations with 5 traits. These signals were distinct from both significant single variant association signals within TOPMed and genetic signals observed in prior studies, demonstrating the complementary value of performing both single and rare variant analyses when analyzing quantitative traits. We also confirm several previously reported signals from semi-quantitative proteomics platforms. Many of these signals demonstrate the extensive allelic heterogeneity and ancestry-differentiated variant-trait associations common for inflammation biomarkers, a characteristic we hypothesize will be increasingly observed with well-powered, large-scale analyses of complex traits.

2.
Epigenetics ; 19(1): 2333668, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38571307

RESUMEN

Systemic low-grade inflammation is a feature of chronic disease. C-reactive protein (CRP) is a common biomarker of inflammation and used as an indicator of disease risk; however, the role of inflammation in disease is not completely understood. Methylation is an epigenetic modification in the DNA which plays a pivotal role in gene expression. In this study we evaluated differential DNA methylation patterns associated with blood CRP level to elucidate biological pathways and genetic regulatory mechanisms to improve the understanding of chronic inflammation. The racially and ethnically diverse participants in this study were included as 50% White, 41% Black or African American, 7% Hispanic or Latino/a, and 2% Native Hawaiian, Asian American, American Indian, or Alaska Native (total n = 13,433) individuals. We replicated 113 CpG sites from 87 unique loci, of which five were novel (CADM3, NALCN, NLRC5, ZNF792, and cg03282312), across a discovery set of 1,150 CpG sites associated with CRP level (p < 1.2E-7). The downstream pathways affected by DNA methylation included the identification of IFI16 and IRF7 CpG-gene transcript pairs which contributed to the innate immune response gene enrichment pathway along with NLRC5, NOD2, and AIM2. Gene enrichment analysis also identified the nuclear factor-kappaB transcription pathway. Using two-sample Mendelian randomization (MR) we inferred methylation at three CpG sites as causal for CRP levels using both White and Black or African American MR instrument variables. Overall, we identified novel CpG sites and gene transcripts that could be valuable in understanding the specific cellular processes and pathogenic mechanisms involved in inflammation.


Asunto(s)
Proteína C-Reactiva , Metilación de ADN , Humanos , Proteína C-Reactiva/genética , Epigénesis Genética , ADN , Inflamación/genética , Estudio de Asociación del Genoma Completo , Islas de CpG , Péptidos y Proteínas de Señalización Intracelular/genética
3.
Nat Commun ; 15(1): 1016, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310129

RESUMEN

Polygenic risk scores (PRS) have shown successes in clinics, but most PRS methods focus only on participants with distinct primary continental ancestry without accommodating recently-admixed individuals with mosaic continental ancestry backgrounds for different segments of their genomes. Here, we develop GAUDI, a novel penalized-regression-based method specifically designed for admixed individuals. GAUDI explicitly models ancestry-differential effects while borrowing information across segments with shared ancestry in admixed genomes. We demonstrate marked advantages of GAUDI over other methods through comprehensive simulation and real data analyses for traits with associated variants exhibiting ancestral-differential effects. Leveraging data from the Women's Health Initiative study, we show that GAUDI improves PRS prediction of white blood cell count and C-reactive protein in African Americans by > 64% compared to alternative methods, and even outperforms PRS-CSx with large European GWAS for some scenarios. We believe GAUDI will be a valuable tool to mitigate disparities in PRS performance in admixed individuals.


Asunto(s)
Negro o Afroamericano , Puntuación de Riesgo Genético , Programas Informáticos , Humanos , Negro o Afroamericano/genética , Simulación por Computador , Predisposición Genética a la Enfermedad , Genoma Humano , Estudio de Asociación del Genoma Completo/métodos , Fenotipo , Factores de Riesgo
4.
Environ Sci Technol ; 58(1): 132-142, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38154032

RESUMEN

Chemical pollution can degrade aquatic ecosystems. Chinook salmon in contaminated habitats are vulnerable to health impacts from toxic exposures. Few studies have been conducted on adverse health outcomes associated with current levels and mixtures of contaminants. Fewer still address effects specific to the juvenile life-stage of salmonids. The present study evaluated contaminant-related effects from dietary exposure to environmentally relevant concentrations and mixture profiles in juvenile Chinook salmon from industrialized waterways in the U.S. Pacific Northwest using two end points: growth assessment and disease susceptibility. The dose and chemical proportions were reconstituted based on environmental sampling and analysis using the stomach contents of juvenile Chinook salmon recently collected from contaminated, industrialized waterways. Groups of fish were fed a mixture with fixed proportions of 10 polychlorinated biphenyls (PCBs), 3 dichlorodiphenyltrichloroethanes (DDTs), and 13 polycyclic aromatic hydrocarbons (PAHs) at five concentrations for 35 days. These contaminant compounds were selected because of elevated concentrations and the widespread presence in sediments throughout industrialized waterways. Fork length and otolith microstructural growth indicators were significantly reduced in fish fed environmentally relevant concentrations of these contaminants. In addition, contaminant-exposed Chinook salmon were more susceptible to disease during controlled challenges with the pathogen Aeromonas salmonicida. Our results indicate that dietary exposure to contaminants impairs growth and immune function in juvenile Chinook salmon, thereby highlighting that current environmental exposure to chemicals of potential management concern threatens the viability of exposed salmon.


Asunto(s)
Bifenilos Policlorados , Contaminantes Químicos del Agua , Animales , Exposición Dietética/análisis , Salmón/metabolismo , Ecosistema , Exposición a Riesgos Ambientales/análisis , Bifenilos Policlorados/toxicidad , Bifenilos Policlorados/análisis , Bifenilos Policlorados/metabolismo , Contaminantes Químicos del Agua/análisis
5.
bioRxiv ; 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37745480

RESUMEN

Inflammation biomarkers can provide valuable insight into the role of inflammatory processes in many diseases and conditions. Sequencing based analyses of such biomarkers can also serve as an exemplar of the genetic architecture of quantitative traits. To evaluate the biological insight, which can be provided by a multi-ancestry, whole-genome based association study, we performed a comprehensive analysis of 21 inflammation biomarkers from up to 38,465 individuals with whole-genome sequencing from the Trans-Omics for Precision Medicine (TOPMed) program. We identified 22 distinct single-variant associations across 6 traits - E-selectin, intercellular adhesion molecule 1, interleukin-6, lipoprotein-associated phospholipase A2 activity and mass, and P-selectin - that remained significant after conditioning on previously identified associations for these inflammatory biomarkers. We further expanded upon known biomarker associations by pairing the single-variant analysis with a rare variant set-based analysis that further identified 19 significant rare variant set-based associations with 5 traits. These signals were distinct from both significant single variant association signals within TOPMed and genetic signals observed in prior studies, demonstrating the complementary value of performing both single and rare variant analyses when analyzing quantitative traits. We also confirm several previously reported signals from semi-quantitative proteomics platforms. Many of these signals demonstrate the extensive allelic heterogeneity and ancestry-differentiated variant-trait associations common for inflammation biomarkers, a characteristic we hypothesize will be increasingly observed with well-powered, large-scale analyses of complex traits.

6.
Sci Rep ; 13(1): 12952, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563237

RESUMEN

Expression quantitative trait methylation (eQTM) analysis identifies DNA CpG sites at which methylation is associated with gene expression. The present study describes an eQTM resource of CpG-transcript pairs derived from whole blood DNA methylation and RNA sequencing gene expression data in 2115 Framingham Heart Study participants. We identified 70,047 significant cis CpG-transcript pairs at p < 1E-7 where the top most significant eGenes (i.e., gene transcripts associated with a CpG) were enriched in biological pathways related to cell signaling, and for 1208 clinical traits (enrichment false discovery rate [FDR] ≤ 0.05). We also identified 246,667 significant trans CpG-transcript pairs at p < 1E-14 where the top most significant eGenes were enriched in biological pathways related to activation of the immune response, and for 1191 clinical traits (enrichment FDR ≤ 0.05). Independent and external replication of the top 1000 significant cis and trans CpG-transcript pairs was completed in the Women's Health Initiative and Jackson Heart Study cohorts. Using significant cis CpG-transcript pairs, we identified significant mediation of the association between CpG sites and cardiometabolic traits through gene expression and identified shared genetic regulation between CpGs and transcripts associated with cardiometabolic traits. In conclusion, we developed a robust and powerful resource of whole blood eQTM CpG-transcript pairs that can help inform future functional studies that seek to understand the molecular basis of disease.


Asunto(s)
Enfermedades Cardiovasculares , Metilación de ADN , Humanos , Femenino , Sitios de Carácter Cuantitativo , Regulación de la Expresión Génica , Estudios Longitudinales , Enfermedades Cardiovasculares/genética , Islas de CpG/genética , Estudio de Asociación del Genoma Completo
7.
Environ Sci Technol ; 56(5): 3159-3169, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35166536

RESUMEN

Chemical contamination is an increasingly important conservation issue in urban runoff-impacted watersheds. Regulatory and restoration efforts typically evaluate limited conventional parameters and pollutants. However, complex urban chemical mixtures contain hundreds to thousands of organic contaminants that remain unidentified, unregulated, and poorly understood. This study aimed to develop broadly representative metrics of water quality impairment corresponding to previously documented biological degradation along gradients of human impacts. Stream samples (n = 65, baseflow/rainfall conditions, 2017-2018) were collected from 15 regional watersheds (Puget Sound, WA, USA) across an urbanization gradient defined by landscape characteristics. Surface water chemical composition characterized via non-targeted high-resolution mass spectrometry (7068 detections) was highly correlated with landscape-based urbanization gradient (p < 0.01) and season (p < 0.01). Landscape-scale changes in chemical composition closely aligned with two anchors of biological decline: coho salmon (Oncorhynchus kisutch) mortality risk (p < 0.001) and loss of stream macroinvertebrate diversity and abundance (p < 0.001). We isolated and identified 32 indicators for urban runoff impacts and corresponding receiving water ecological health, including well-known anthropogenic contaminants (e.g., caffeine, organophosphates, vehicle-derived chemicals), two related environmental transformation products, and a novel (methoxymethyl)melamine compound. Outcomes support data-directed selection of next-generation water quality indicators for prioritization and evaluation of watershed management efforts intended to protect aquatic ecosystems.


Asunto(s)
Oncorhynchus kisutch , Contaminantes Químicos del Agua , Animales , Ecosistema , Monitoreo del Ambiente/métodos , Humanos , Ríos , Urbanización , Contaminantes Químicos del Agua/análisis , Calidad del Agua
8.
Environ Sci Technol ; 55(17): 11767-11774, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34410108

RESUMEN

Tire tread wear particles (TWP) are increasingly recognized as a global pollutant of surface waters, but their impact on biota in receiving waters is rarely addressed. In the developed U.S. Pacific Northwest, acute mortality of adult coho salmon (Oncorhynchus kisutch) follows rain events and is correlated with roadway density. Roadway runoff experimentally triggers behavioral symptoms and associated changes in blood indicative of cardiorespiratory distress prior to death. Closely related chum salmon (O. keta) lack an equivalent response. Acute mortality of juvenile coho was recently experimentally linked to a transformation product of a tire-derived chemical. We evaluated whether TWP leachate is sufficient to trigger the acute mortality syndrome in adult coho salmon. We characterized the acute response of adult coho and chum salmon to TWP leachate (survival, behavior, blood physiology) and compared it with that caused by roadway runoff. TWP leachate was acutely lethal to coho at concentrations similar to roadway runoff, with the same behaviors and blood parameters impacted. As with runoff, chum salmon appeared insensitive to TWP leachate at concentrations lethal to coho. Our results confirm that environmentally relevant TWP exposures cause acute mortalities of a keystone aquatic species.


Asunto(s)
Contaminantes Ambientales , Oncorhynchus keta , Oncorhynchus kisutch , Animales , Lluvia , Agua
9.
Environ Sci Technol ; 55(14): 9968-9978, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34252275

RESUMEN

The industrial waterway in Portland Harbor, Oregon, is a migration corridor for a distinct population segment of Chinook Salmon (Upper Willamette River) currently protected by the U.S. Endangered Species Act. Juveniles are exposed to a suite of contaminants during outmigration including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and dichlorodiphenyltrichloroethanes. We collected natural origin subyearling Chinook salmon from sites in and around the industrial harbor to evaluate growth (otolith microstructural analysis) in relation to measured chemical concentrations in tissue. A reduced growth rate was associated with higher tissue contaminant concentrations, particularly mixtures represented by PAHs and certain PCBs, which were elevated in juvenile Chinook collected throughout sites within Portland Harbor relative to those captured upstream. First-year growth is an established predictor of individual survival and eventual reproductive success in Chinook salmon. Therefore, our results indicate that legacy pollution may be limiting the population abundance of threatened Willamette River Chinook salmon, and future habitat remediation or restoration actions may benefit ongoing species recovery efforts.


Asunto(s)
Bifenilos Policlorados , Hidrocarburos Policíclicos Aromáticos , Animales , Ecosistema , Ríos , Salmón
10.
NPJ Digit Med ; 2: 10, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31304359

RESUMEN

Much of the AI work in healthcare is focused around disease prediction in clinical settings, which is an important application that has yet to deliver in earnest. However, there are other fundamental aspects like helping patients and care teams interact and communicate in efficient and meaningful ways, which could deliver quadruple-aim improvements. After heart disease and cancer, preventable medical errors are the third leading cause of death in the United States. The largest subset of medical errors is medication error. Providing the right treatment plan for patients includes knowledge about their current medications and drug allergies, an often challenging task. The widespread growth of prescribing and consuming medications has increased the need for applications that support medication reconciliation. We show a deep-learning application that can help reduce avoidable errors with their attendant risk, i.e., correctly identifying prescription medication, which is currently a tedious and error-prone task. We demonstrate prescription-pill identification from mobile images in the NIH NLM Pill Image Recognition Challenge dataset. Our application recognizes the correct pill within the top-5 results at 94% accuracy, which compares favorably to the original competition winner at 83.3% for top-5 under comparable, though not identical configurations. The Institute of Medicine claims that better use of information technology can be an important step in reducing medication errors. Therefore, we believe that a more immediate impact of AI in healthcare will occur with a seamless integration of AI into clinical workflows, readily addressing the quadruple aim of healthcare.

11.
Aquat Toxicol ; 214: 105231, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31295703

RESUMEN

Untreated urban runoff poses significant water quality threats to aquatic organisms. In northwestern North America, ongoing development in coastal watersheds is increasing the transport of toxic chemical contaminants to river and stream networks that provide spawning and rearing habitats for several species of Pacific salmon. Adult coho (Oncorhynchus kisutch) are particularly vulnerable to a stormwater-driven mortality syndrome. The phenomenon may prematurely kill more than half of the coho that return each fall to spawn in catchments with a high degree of imperviousness. Here we evaluate the coho mortality syndrome at the juvenile life stage. Freshwater-stage juveniles were exposed to stormwater collected from a high traffic volume urban arterial roadway. Symptoms characteristic of the mortality syndrome were evaluated using digital image analysis, and discrete stages of abnormal behavior were characterized as the syndrome progressed. At a subset of these stages, blood was analyzed for ion homeostasis, hematocrit, pH, glucose, and lactate. Several of these blood chemistry parameters were significantly dysregulated in symptomatic juvenile coho. Affected fish did not recover when transferred to clean water, suggesting a single runoff event to stream habitats could be lethal if resident coho become overtly symptomatic. Among coho life stages, our findings indicate the urban runoff mortality syndrome is not unique to adult spawners. Therefore, the consequences for wild coho populations in developing watersheds are likely to be greater than previously anticipated.


Asunto(s)
Oncorhynchus kisutch/fisiología , Agua , Animales , Conducta Animal , Agua Dulce , Oncorhynchus kisutch/sangre , Análisis de Componente Principal , Contaminantes Químicos del Agua/toxicidad , Calidad del Agua
12.
PLoS One ; 14(3): e0214399, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30901374

RESUMEN

In the western United States, the long-term recovery of many Pacific salmon populations is inextricably linked to freshwater habitat quality. Industrial activities from the past century have left a legacy of pollutants that persist, particularly near working waterfronts. The adverse impacts of these contaminants on salmon health have been studied for decades, but the population-scale consequences of chemical exposure for salmonids are still poorly understood. We estimated acute and delayed mortality rates for seaward migrating juvenile Chinook salmon that feed and grow in a Superfund-designated area in the Lower Willamette River in Portland, Oregon. We combined previous, field-collected exposure data for juvenile Chinook salmon together with reduced growth and disease resistance data from earlier field and laboratory studies. Estimates of mortality were then incorporated into a life cycle model to explore chemical habitat-related fish loss. We found that 54% improved juvenile survival-potentially as a result of future remediation activities-could increase adult Chinook salmon population abundance by more than 20%. This study provides a framework for evaluating pollution remediation as a positive driver for species recovery.


Asunto(s)
Salmón/fisiología , Contaminantes Químicos del Agua/toxicidad , Migración Animal/efectos de los fármacos , Animales , Ecosistema , Monitoreo del Ambiente , Agua Dulce
13.
Mar Pollut Bull ; 136: 448-453, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30509828

RESUMEN

The Southern Resident killer whale population (Orcinus orca) was listed as endangered in 2005 and shows little sign of recovery. Exposure to contaminants and risk of an oil spill are identified threats. Previous studies on contaminants have largely focused on legacy pollutants. Here we measure polycyclic aromatic hydrocarbons (PAHs) in whale fecal (scat) samples. PAHs are a diverse group of hazardous compounds (e.g., carcinogenic, mutagenic), and are a component of crude and refined oil as well as motor exhaust. The central finding from this study indicates low concentrations of the measured PAHs (<10 ppb, wet weight), as expected; however, PAHs were as high as 104 ppb prior to implementation of guidelines mandating increased distance between vessels and whales. While causality is unclear, the potential PAH exposure from vessels warrants continued monitoring. Historical precedent similarly emphasizes the importance of having pre-oil spill exposure data available as baseline to guide remediation goals.


Asunto(s)
Heces/química , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis , Orca , Animales , Ecotoxicología/métodos , Especies en Peligro de Extinción , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente/métodos , Femenino , Cromatografía de Gases y Espectrometría de Masas/métodos , Masculino , Océano Pacífico , Contaminación por Petróleo , Navíos , Emisiones de Vehículos , Washingtón
14.
Environ Pollut ; 238: 196-203, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29554567

RESUMEN

Adult coho salmon (Oncorhynchus kisutch) prematurely die when they return from the ocean to spawn in urban watersheds throughout northwestern North America. The available evidence suggests the annual mortality events are caused by toxic stormwater runoff. The underlying pathophysiology of the urban spawner mortality syndrome is not known, and it is unclear whether closely related species of Pacific salmon are similarly at risk. The present study co-exposed adult coho and chum (O. keta) salmon to runoff from a high traffic volume urban arterial roadway. The spawners were monitored for the familiar symptoms of the mortality syndrome, including surface swimming, loss of orientation, and loss of equilibrium. Moreover, the hematology of both species was profiled by measuring arterial pH, blood gases, lactate, plasma electrolytes, hematocrit, and glucose. Adult coho developed behavioral symptoms within a few hours of exposure to stormwater. Various measured hematological parameters were significantly altered compared to coho controls, indicating a blood acidosis and ionoregulatory disturbance. By contrast, runoff-exposed chum spawners showed essentially no indications of the mortality syndrome, and measured blood hematological parameters were similar to unexposed chum controls. We conclude that contaminant(s) in urban runoff are the likely cause of the disruption of ion balance and pH in coho but not chum salmon. Among the thousands of chemicals in stormwater, future forensic analyses should focus on the gill or cardiovascular system of coho salmon. Because of their distinctive sensitivity to urban runoff, adult coho remain an important vertebrate indicator species for degraded water quality in freshwater habitats under pressure from human population growth and urbanization.


Asunto(s)
Monitoreo del Ambiente , Oncorhynchus kisutch/fisiología , Aguas Residuales/toxicidad , Contaminantes del Agua/toxicidad , Animales , Ecosistema , Branquias , Humanos , Oncorhynchus keta , Lluvia , Salmón , Urbanización , Contaminantes del Agua/análisis , Calidad del Agua
15.
PLoS One ; 12(6): e0179824, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28662095

RESUMEN

The Southern Resident killer whale population (Orcinus orca) was listed as endangered in 2005 and shows little sign of recovery. These fish eating whales feed primarily on endangered Chinook salmon. Population growth is constrained by low offspring production for the number of reproductive females in the population. Lack of prey, increased toxins and vessel disturbance have been listed as potential causes of the whale's decline, but partitioning these pressures has been difficult. We validated and applied temporal measures of progesterone and testosterone metabolites to assess occurrence, stage and health of pregnancy from genotyped killer whale feces collected using detection dogs. Thyroid and glucocorticoid hormone metabolites were measured from these same samples to assess physiological stress. These methods enabled us to assess pregnancy occurrence and failure as well as how pregnancy success was temporally impacted by nutritional and other stressors, between 2008 and 2014. Up to 69% of all detectable pregnancies were unsuccessful; of these, up to 33% failed relatively late in gestation or immediately post-partum, when the cost is especially high. Low availability of Chinook salmon appears to be an important stressor among these fish-eating whales as well as a significant cause of late pregnancy failure, including unobserved perinatal loss. However, release of lipophilic toxicants during fat metabolism in the nutritionally deprived animals may also provide a contributor to these cumulative effects. Results point to the importance of promoting Chinook salmon recovery to enhance population growth of Southern Resident killer whales. The physiological measures used in this study can also be used to monitor the success of actions aimed at promoting adaptive management of this important apex predator to the Pacific Northwest.


Asunto(s)
Especies en Peligro de Extinción , Estado Nutricional , Orca/fisiología , Animales , Femenino , Crecimiento Demográfico , Embarazo , Reproducción
16.
Environ Sci Technol ; 50(12): 6506-16, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27186642

RESUMEN

Persistent organic pollutants (POPs), specifically PCBs, PBDEs, and DDTs, in the marine environment are well documented, however accumulation and mobilization patterns at the top of the food-web are poorly understood. This study broadens the understanding of POPs in the endangered Southern Resident killer whale population by addressing modulation by prey availability and reproductive status, along with endocrine disrupting effects. A total of 140 killer whale scat samples collected from 54 unique whales across a 4 year sampling period (2010-2013) were analyzed for concentrations of POPs. Toxicant measures were linked to pod, age, and birth order in genotyped individuals, prey abundance using open-source test fishery data, and pregnancy status based on hormone indices from the same sample. Toxicant concentrations were highest and had the greatest potential for toxicity when prey abundance was the lowest. In addition, these toxicants were likely from endogenous lipid stores. Bioaccumulation of POPs increased with age, with the exception of presumed nulliparous females. The exceptional pattern may be explained by females experiencing unobserved neonatal loss. Transfer of POPs through mobilization of endogenous lipid stores during lactation was highest for first-borns with diminished transfer to subsequent calves. Contrary to expectation, POP concentrations did not demonstrate an associated disruption of thyroid hormone, although this association may have been masked by impacts of prey abundance on thyroid hormone concentrations. The noninvasive method for measuring POP concentrations in killer whales through scat employed in this study may improve toxicant monitoring in the marine environment and promote conservation efforts.


Asunto(s)
Monitoreo del Ambiente , Orca , Animales , Éteres Difenilos Halogenados , Bifenilos Policlorados , Reproducción
17.
PLoS One ; 11(1): e0144956, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26735849

RESUMEN

Estimating diet composition is important for understanding interactions between predators and prey and thus illuminating ecosystem function. The diet of many species, however, is difficult to observe directly. Genetic analysis of fecal material collected in the field is therefore a useful tool for gaining insight into wild animal diets. In this study, we used high-throughput DNA sequencing to quantitatively estimate the diet composition of an endangered population of wild killer whales (Orcinus orca) in their summer range in the Salish Sea. We combined 175 fecal samples collected between May and September from five years between 2006 and 2011 into 13 sample groups. Two known DNA composition control groups were also created. Each group was sequenced at a ~330bp segment of the 16s gene in the mitochondrial genome using an Illumina MiSeq sequencing system. After several quality controls steps, 4,987,107 individual sequences were aligned to a custom sequence database containing 19 potential fish prey species and the most likely species of each fecal-derived sequence was determined. Based on these alignments, salmonids made up >98.6% of the total sequences and thus of the inferred diet. Of the six salmonid species, Chinook salmon made up 79.5% of the sequences, followed by coho salmon (15%). Over all years, a clear pattern emerged with Chinook salmon dominating the estimated diet early in the summer, and coho salmon contributing an average of >40% of the diet in late summer. Sockeye salmon appeared to be occasionally important, at >18% in some sample groups. Non-salmonids were rarely observed. Our results are consistent with earlier results based on surface prey remains, and confirm the importance of Chinook salmon in this population's summer diet.


Asunto(s)
ADN Mitocondrial/química , Dieta , Heces/química , Orca/fisiología , Animales , ADN Mitocondrial/análisis , ADN Mitocondrial/aislamiento & purificación , Bases de Datos Genéticas , Peces/genética , Cadena Alimentaria , Secuenciación de Nucleótidos de Alto Rendimiento , Mitocondrias/genética , Oncorhynchus kisutch/genética , Salmón/genética , Salmonidae/genética , Estaciones del Año , Análisis de Secuencia de ADN
18.
Arch Environ Contam Toxicol ; 70(1): 9-19, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26298464

RESUMEN

Biologic sample collection in wild cetacean populations is challenging. Most information on toxicant levels is obtained from blubber biopsy samples; however, sample collection is invasive and strictly regulated under permit, thus limiting sample numbers. Methods are needed to monitor toxicant levels that increase temporal and repeat sampling of individuals for population health and recovery models. The objective of this study was to optimize measuring trace levels (parts per billion) of persistent organic pollutants (POPs), namely polychlorinated-biphenyls (PCBs), polybrominated-diphenyl-ethers (PBDEs), dichlorodiphenyltrichloroethanes (DDTs), and hexachlorocyclobenzene, in killer whale scat (fecal) samples. Archival scat samples, initially collected, lyophilized, and extracted with 70 % ethanol for hormone analyses, were used to analyze POP concentrations. The residual pellet was extracted and analyzed using gas chromatography coupled with mass spectrometry. Method detection limits ranged from 11 to 125 ng/g dry weight. The described method is suitable for p,p'-DDE, PCBs-138, 153, 180, and 187, and PBDEs-47 and 100; other POPs were below the limit of detection. We applied this method to 126 scat samples collected from Southern Resident killer whales. Scat samples from 22 adult whales also had known POP concentrations in blubber and demonstrated significant correlations (p < 0.01) between matrices across target analytes. Overall, the scat toxicant measures matched previously reported patterns from blubber samples of decreased levels in reproductive-age females and a decreased p,p'-DDE/∑PCB ratio in J-pod. Measuring toxicants in scat samples provides an unprecedented opportunity to noninvasively evaluate contaminant levels in wild cetacean populations; these data have the prospect to provide meaningful information for vital management decisions.


Asunto(s)
Monitoreo del Ambiente , Heces/química , Contaminantes Químicos del Agua/análisis , Orca , Animales , Diclorodifenil Dicloroetileno/análisis , Femenino , Cromatografía de Gases y Espectrometría de Masas , Éteres Difenilos Halogenados/análisis , Masculino , Bifenilos Policlorados/análisis
19.
Environ Pollut ; 206: 527-34, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26284348

RESUMEN

Impacts of toxic substances from oil production in the Alberta oil sands (AOS), such as polycyclic aromatic hydrocarbons (PAHs), have been widely debated. Studies have been largely restricted to exposures from surface mining in aquatic species. We measured PAHs in Woodland caribou (Rangifer tarandus caribou), moose (Alces americanus), and Grey wolf (Canis lupus) across three areas that varied in magnitude of in situ oil production. Our results suggest a distinction of PAH level and source profile (petro/pyrogenic) between study areas and species. Caribou samples indicated pyrogenic sourced PAHs in the study area previously devastated by forest fire. Moose and wolf samples from the high oil production area demonstrated PAH ratios indicative of a petrogenic source and increased PAHs, respectively. These findings emphasize the importance of broadening monitoring and research programs in the AOS.


Asunto(s)
Ciervos , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Yacimiento de Petróleo y Gas , Hidrocarburos Policíclicos Aromáticos/análisis , Lobos , Alberta , Animales , Heces/química , Minería , Reno
20.
J Occup Environ Hyg ; 12(5): 334-41, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25616851

RESUMEN

In 2007, the International Agency for Research on Cancer classified shift work that involves circadian disruption as a probable human carcinogen. Suppression of the anti-neoplastic hormone, melatonin, is a presumed mechanism of action. We conducted a case-cohort study nested within a cohort of 267,400 female textile workers in Shanghai, China. Newly diagnosed lung cancer cases (n = 1451) identified during the study period (1989-2006) were compared with an age-stratified subcohort (n = 3040). Adjusting for age, smoking, parity, and endotoxin exposure, relative risks [hazard ratios (HRs)] were estimated by Cox regression modeling to assess associations with cumulative years and nights of rotating shift work. Results did not consistently reveal any increased risk of lung cancer among rotating shift work or statistically significant trends for both cumulative years (HR 0.82, 95% CI 0.66 to 1.02; P(trend) = 0.294) and nights (HR 0.81, 95% CI 0.65 to 1.00; P(trend) = 0.415). Further analyses imposing 10- and 20-year lag times for disease latency also revealed similar results. Contrary to the initial hypothesis, rotating nighttime shift work appears to be associated with a relatively reduced lung cancer risk although the magnitude of the effect was modest and not statistically significant.


Asunto(s)
Neoplasias Pulmonares/epidemiología , Exposición Profesional/efectos adversos , Tolerancia al Trabajo Programado , Adulto , Anciano , China/epidemiología , Ritmo Circadiano , Estudios de Cohortes , Endotoxinas/toxicidad , Femenino , Humanos , Neoplasias Pulmonares/etiología , Persona de Mediana Edad , Factores de Riesgo , Fumar/efectos adversos , Industria Textil
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...