Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 29(15): e1-e3, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37260194

RESUMEN

An essential metric for describing carbon dynamics in managed forest landscapes is the recovery time of the carbon balance after clear-cutting. Here, we demonstrate how the age-dependent mathematical trajectory is affected by both the selected model and data availability, leading to considerable uncertainty in the modelling of the net ecosystem production (NEP) over stand age. We further show that the initial carbon loss estimates associated with the timing of the source-sink transition (SST) are significant, but may have a limited effect on the total carbon sequestration at the end of the standard (RP, 120 years) or optimal (OCS) rotation periods.


Asunto(s)
Ecosistema , Árboles , Carbono , Incertidumbre , Bosques , Secuestro de Carbono
2.
New Phytol ; 239(6): 2166-2179, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37148187

RESUMEN

Nitrogen (N) fertilization increases biomass and soil organic carbon (SOC) accumulation in boreal pine forests, but the underlying mechanisms remain uncertain. At two Scots pine sites, one undergoing annual N fertilization and the other a reference, we sought to explain these responses. We measured component fluxes, including biomass production, SOC accumulation, and respiration, and summed them into carbon budgets. We compared the resulting summations to ecosystem fluxes measured by eddy covariance. N fertilization increased most component fluxes (P < 0.05), especially SOC accumulation (20×). Only fine-root, mycorrhiza, and exudate production decreased, by 237 (SD = 28) g C m-2 yr-1 . Stemwood production increases were ascribed to this partitioning shift, gross primary production (GPP), and carbon-use efficiency, in that order. The methods agreed in their estimates of GPP in both stands (P > 0.05), but the components detected an increase in net ecosystem production (NEP) (190 (54) g C m-2 yr-1 ; P < 0.01) that eddy covariance did not (19 (62) g C m-2 yr-1 ; ns). The pairing of plots, the simplicity of the sites, and the strength of response provide a compelling description of N effects on the C budget. However, the disagreement between methods calls for further paired tests of N fertilization effects in simple forest ecosystems.


Asunto(s)
Ecosistema , Pinus sylvestris , Carbono , Árboles/fisiología , Nitrógeno , Suelo , Bosques , Dióxido de Carbono
4.
Glob Chang Biol ; 29(4): 1119-1132, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36464908

RESUMEN

Boreal forests are important global carbon (C) sinks and, therefore, considered as a key element in climate change mitigation policies. However, their actual C sink strength is uncertain and under debate, particularly for the actively managed forests in the boreal regions of Fennoscandia. In this study, we use an extensive set of biometric- and chamber-based C flux data collected in 50 forest stands (ranging from 5 to 211 years) over 3 years (2016-2018) with the aim to explore the variations of the annual net ecosystem production (NEP; i.e., the ecosystem C balance) across a 68 km2 managed boreal forest landscape in northern Sweden. Our results demonstrate that net primary production rather than heterotrophic respiration regulated the spatio-temporal variations of NEP across the heterogeneous mosaic of the managed boreal forest landscape. We further find divergent successional patterns of NEP in our managed forests relative to naturally regenerating boreal forests, including (i) a fast recovery of the C sink function within the first decade after harvest due to the rapid establishment of a productive understory layer and (ii) a sustained C sink in old stands (131-211 years). We estimate that the rotation period for optimum C sequestration extends to 138 years, which over multiple rotations results in a long-term C sequestration rate of 86.5 t C ha-1 per rotation. Our study highlights the potential of forest management to maximize C sequestration of boreal forest landscapes and associate climate change mitigation effects by developing strategies that optimize tree biomass production rather than heterotrophic soil C emissions.


Asunto(s)
Ecosistema , Taiga , Carbono , Bosques , Biomasa , Árboles , Secuestro de Carbono
5.
Ambio ; 51(12): 2478-2495, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35661986

RESUMEN

The rotation forestry system provides high biomass production, but could also have a negative impact on species sensitive to disturbance. Continuous cover forestry (CCF) could contribute to solving these conflicting goals, but its feasibility in nutrient limited boreal forests is yet unresolved. In a unique experiment, we simultaneously assessed the short-term effect of single-tree selection on both biomass production and biodiversity (vascular plants, bryophytes, wood-inhabiting fungi), and tested fertilization as a way to mediate growth-biodiversity trade-offs. We found that unharvested stands and stands subjected to single-tree selection had a similar species assemblage of vascular plants, bryophytes, and wood-inhabiting fungi. Fertilization increased growth by 37% and induced shifts in two understory species (favoring the grass Avenella flexuosa and disfavoring the bryophyte Hylocomium splendens). We conclude that single-tree selection may become a useful tool to enhance biodiversity in managed forests.


Asunto(s)
Abies , Picea , Pinus , Agricultura Forestal , Árboles , Biomasa , Bosques , Biodiversidad
6.
Sci Total Environ ; 838(Pt 3): 156327, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35640755

RESUMEN

Nutrient enrichment can alleviate productivity limitations and thus substantially increase carbon (C) uptake in northern coniferous forests. Yet, factors controlling stand-to-stand variation of forest ecosystem responses to nutrient enrichment remain unclear. We used five long-term (13 years) nutrient-enrichment experiments across Sweden, where nitrogen (N), phosphorus, and potassium were applied annually to young Norway spruce forests that varied in their baseline ecosystem properties. We measured tree biomass and soil C and N stocks, litterfall C inputs, soil CO2 efflux, and shifts in composition and biomass of soil microbial communities to understand the links between above and belowground responses to nutrient enrichment. We found that the strongest responses in tree biomass occurred when baseline site productivity was lowest. High increases in tree biomass C stocks were generally balanced by weaker responses in organic soil C stocks. The average ecosystem C-N response rate was 35 kg C kg-1 N added, with a nearly five-fold greater response rate in tree biomass than in soil. The positive nutrient enrichment effects on ecosystem C sinks were driven by a 95% increase in tree biomass C stocks, 150% increase in litter production, 67% increase in organic layer C stocks, and a 46% reduction in soil CO2 efflux accompanied by compositional changes in soil microbial communities. Our results show that ecosystem C uptake in spruce forests in northern Europe can be substantially enhanced by nutrient enrichment; however, the strength of the responses and whether the enhancement occurs mainly in tree biomass or soils are dependent on baseline forest productivity.


Asunto(s)
Secuestro de Carbono , Suelo , Biomasa , Carbono , Dióxido de Carbono , Ecosistema , Bosques , Nitrógeno , Nutrientes , Taiga , Árboles
7.
New Phytol ; 232(1): 113-122, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34166537

RESUMEN

Understanding how plant water uptake interacts with acquisition of soil nitrogen (N) and other nutrients is fundamental for predicting plant responses to a changing environment, but it is an area where models disagree. We present a novel isotopic labelling approach which reveals spatial patterns of water and N uptake, and their interaction, by trees. The stable isotopes 15 N and 2 H were applied to a small area of the forest floor in stands with high and low soil N availability. Uptake by surrounding trees was measured. The sensitivity of N acquisition to water uptake was quantified by statistical modelling. Trees in the high-N stand acquired twice as much 15 N as in the low-N stand and around half of their N uptake was dependent on water uptake (2 H enrichment). By contrast, in the low-N stand there was no positive effect of water uptake on N uptake. We conclude that tree N acquisition was only marginally dependent on water flux toward the root surface under low-N conditions whereas under high-N conditions, the water-associated N uptake was substantial. The results suggest a fundamental shift in N acquisition strategy under high-N conditions.


Asunto(s)
Pinus sylvestris , Árboles , Nitrógeno/análisis , Suelo , Taiga , Agua
8.
Glob Chang Biol ; 26(10): 5365-5370, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32816359

RESUMEN

The growth of the global terrestrial sink of carbon dioxide has puzzled scientists for decades. We propose that the role of land management practices-from intensive forestry to allowing passive afforestation of abandoned lands-have played a major role in the growth of the terrestrial carbon sink in the decades since the mid twentieth century. The Forest Transition, a historic transition from shrinking to expanding forests, and from sparser to denser forests, has seen an increase of biomass and carbon across large regions of the globe. We propose that the contribution of Forest Transitions to the terrestrial carbon sink has been underestimated. Because forest growth is slow and incremental, changes in the carbon density in forest biomass and soils often elude detection. Measurement technologies that rely on changes in two-dimensional ground cover can miss changes in forest density. In contrast, changes from abrupt and total losses of biomass in land clearing, forest fires and clear cuts are easy to measure. Land management improves over time providing important present contributions and future potential to climate change mitigation. Appreciating the contributions of Forest Transitions to the sequestering of atmospheric carbon will enable its potential to aid in climate change mitigation.


Asunto(s)
Bosques , Árboles , Biomasa , Secuestro de Carbono , Agricultura Forestal
9.
Glob Chang Biol ; 26(4): 2353-2367, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31912589

RESUMEN

The boreal biome exchanges large amounts of carbon (C) and greenhouse gases (GHGs) with the atmosphere and thus significantly affects the global climate. A managed boreal landscape consists of various sinks and sources of carbon dioxide (CO2 ), methane (CH4 ), and dissolved organic and inorganic carbon (DOC and DIC) across forests, mires, lakes, and streams. Due to the spatial heterogeneity, large uncertainties exist regarding the net landscape carbon balance (NLCB). In this study, we compiled terrestrial and aquatic fluxes of CO2 , CH4 , DOC, DIC, and harvested C obtained from tall-tower eddy covariance measurements, stream monitoring, and remote sensing of biomass stocks for an entire boreal catchment (~68 km2 ) in Sweden to estimate the NLCB across the land-water-atmosphere continuum. Our results showed that this managed boreal forest landscape was a net C sink (NLCB = 39 g C m-2  year-1 ) with the landscape-atmosphere CO2 exchange being the dominant component, followed by the C export via harvest and streams. Accounting for the global warming potential of CH4 , the landscape was a GHG sink of 237 g CO2 -eq m-2  year-1 , thus providing a climate-cooling effect. The CH4 flux contribution to the annual GHG budget increased from 0.6% during spring to 3.2% during winter. The aquatic C loss was most significant during spring contributing 8% to the annual NLCB. We further found that abiotic controls (e.g., air temperature and incoming radiation) regulated the temporal variability of the NLCB whereas land cover types (e.g., mire vs. forest) and management practices (e.g., clear-cutting) determined their spatial variability. Our study advocates the need for integrating terrestrial and aquatic fluxes at the landscape scale based on tall-tower eddy covariance measurements combined with biomass stock and stream monitoring to develop a holistic understanding of the NLCB of managed boreal forest landscapes and to better evaluate their potential for mitigating climate change.

10.
J Environ Manage ; 210: 1-9, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29329003

RESUMEN

We evaluated the long-term implications from modifying rotation lengths in production forests for four forest-reliant species with different habitat requirements. By combining simulations of forest development with habitat models, and accounting both for stand and landscape scale influences, we projected habitat availability over 150 years in a large Swedish landscape, using rotation lengths which are longer (+22% and +50%) and shorter (-22%) compared to current practices. In terms of mean habitat availability through time, species requiring older forest were affected positively by extended rotations, and negatively by shortened rotations. For example, the mean habitat area for the treecreeper Certhia familiaris (a bird preferring forest with larger trees) increased by 31% when rotations were increased by 22%, at a 5% cost to net present value (NPV) and a 7% decrease in harvested volume. Extending rotation lengths by 50% provided more habitat for this species compared to a 22% extension, but at a much higher marginal cost. In contrast, the beetle Hadreule elongatula, which is dependent on sun-exposed dead wood, benefited from shortened rather than prolonged rotations. Due to an uneven distribution of stand-ages within the landscape, the relative amounts of habitat provided by different rotation length scenarios for a given species were not always consistent through time during the simulation period. If implemented as a conservation measure, prolonging rotations will require long-term strategic planning to avoid future bottlenecks in habitat availability, and will need to be accompanied by complementary measures accounting for the diversity of habitats necessary for the conservation of forest biodiversity.


Asunto(s)
Conservación de los Recursos Naturales , Agricultura Forestal , Animales , Ecosistema , Bosques , Suecia , Árboles
11.
Ecol Appl ; 27(6): 1838-1851, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28464423

RESUMEN

We report results from long-term simulated external nitrogen (N) input experiments in three northern Pinus sylvestris forests, two of moderately high and one of moderately low productivity, assessing effects on annual net primary production (NPP) of woody mass and its interannual variation in response to variability in weather conditions. A sigmoidal response of wood NPP to external N inputs was observed in the both higher and lower productivity stands, reaching a maximum of ~65% enhancement regardless of the native site productivity, saturating at an external N input of 4-5 g N·m-2 ·yr-1 . The rate of increase in wood NPP and the N response efficiency (REN , increase in wood NPP per external N input) were maximized at an external N input of ~3 g N·m-2 ·yr-1 , regardless of site productivity. The maximum REN was greater in the higher productivity than the lower productivity stand (~20 vs. ~14 g C/g N). The N-induced enhancement of wood NPP and its REN were, however, markedly contingent on climatic variables. In both of the higher and lower productivity stands, wood NPP increased with growing season precipitation (P), but only up to ~400 mm. The sensitivity of the response to P increased with increasing external N inputs. Increasing growing season temperature (T) somewhat increased the N-induced drought effect, whereas decreasing T reduced the drought effect. These responses of wood NPP infused a large temporal variation to REN , making the use of a fixed value unadvisable. Based on these results, we suggest that regional climate conditions and future climate scenarios should be considered when modeling carbon sequestration in response to N deposition in boreal P. sylvestris, and possibly other forests.


Asunto(s)
Secuestro de Carbono , Clima , Bosques , Nitrógeno/metabolismo , Pinus sylvestris/metabolismo , Noruega , Estaciones del Año , Suecia , Árboles/metabolismo , Madera/química , Madera/metabolismo
12.
J Environ Manage ; 197: 404-414, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28411568

RESUMEN

A variety of modeling approaches can be used to project the future development of forest systems, and help to assess the implications of different management alternatives for biodiversity and ecosystem services. This diversity of approaches does however present both an opportunity and an obstacle for those trying to decide which modeling technique to apply, and interpreting the management implications of model output. Furthermore, the breadth of issues relevant to addressing key questions related to forest ecology, conservation biology, silviculture, economics, requires insights stemming from a number of distinct scientific disciplines. As forest planners, conservation ecologists, ecological economists and silviculturalists, experienced with modeling trade-offs and synergies between biodiversity and wood biomass production, we identified fifteen key considerations relevant to assessing the pros and cons of alternative modeling approaches. Specifically we identified key considerations linked to study question formulation, modeling forest dynamics, forest processes, study landscapes, spatial and temporal aspects, and the key response metrics - biodiversity and wood biomass production, as well as dealing with trade-offs and uncertainties. We also provide illustrative examples from the modeling literature stemming from the key considerations assessed. We use our findings to reiterate the need for explicitly addressing and conveying the limitations and uncertainties of any modeling approach taken, and the need for interdisciplinary research efforts when addressing the conservation of biodiversity and sustainable use of environmental resources.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Bosques , Ecosistema , Madera
13.
Ambio ; 46(3): 324-334, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28236260

RESUMEN

Because of the limited spatial extent and comprehensiveness of protected areas, an increasing emphasis is being placed on conserving habitats which promote biodiversity within production forest. For this reason, alternative silvicultural programs need to be evaluated with respect to their implications for forest biodiversity, especially if these programs are likely to be adopted. Here we simulated the effect of varied rotation length and associated thinning regimes on habitat availability in Scots pine and Norway spruce production forests, with high and low productivity. Shorter rotation lengths reduced the contribution made by production trees (trees grown for industrial use) to the availability of key habitat features, while concurrently increasing the contribution from retention trees. The contribution of production trees to habitat features was larger for high productivity sites, than for low productivity sites. We conclude that shortened rotation lengths result in losses of the availability of habitat features that are key for biodiversity conservation and that increased retention practices may only partially compensate for this. Ensuring that conservation efforts better reflect the inherent variation in stand rotation lengths would help improve the maintenance of key forest habitats in production forests.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Agricultura Forestal/métodos , Modelos Teóricos , Picea , Pinus , Simulación por Computador , Bosques , Árboles
14.
Ambio ; 45 Suppl 2: 109-23, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26744047

RESUMEN

The rotation length is a key component of even-aged forest management systems. Using Fennoscandian forestry as a case, we review the socio-ecological implications of modifying rotation lengths relative to current practice by evaluating effects on a range of ecosystem services and on biodiversity conservation. The effects of shortening rotations on provisioning services are expected to be mostly negative to neutral (e.g. production of wood, bilberries, reindeer forage), while those of extending rotations would be more varied. Shortening rotations may help limit damage by some of today's major damaging agents (e.g. root rot, cambium-feeding insects), but may also increase other damage types (e.g. regeneration pests) and impede climate mitigation. Supporting (water, soil nutrients) and cultural (aesthetics, cultural heritage) ecosystem services would generally be affected negatively by shortened rotations and positively by extended rotations, as would most biodiversity indicators. Several effect modifiers, such as changes to thinning regimes, could alter these patterns.


Asunto(s)
Agricultura Forestal/métodos , Biodiversidad , Conservación de los Recursos Naturales , Ecosistema , Bosques , Control de Plagas , Recreación , Suecia , Factores de Tiempo
15.
Ambio ; 45 Suppl 2: 140-51, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26744049

RESUMEN

There is a growing demand for alternatives to Sweden's current dominant silvicultural system, driven by a desire to raise biomass production, meet environmental goals and mitigate climate change. However, moving towards diversified forest management that deviates from well established silvicultural practices carries many uncertainties and risks. Adaptive management is often suggested as an effective means of managing in the context of such complexities. Yet there has been scepticism over its appropriateness in cases characterised by large spatial extents, extended temporal scales and complex land ownership-characteristics typical of Swedish forestry. Drawing on published research, including a new paradigm for adaptive management, we indicate how common pitfalls can be avoided during implementation. We indicate the investment, infrastructure, and considerations necessary to benefit from adaptive management. In doing so, we show how this approach could offer a pragmatic operational model for managing the uncertainties, risks and obstacles associated with new silvicultural systems and the challenges facing Swedish forestry.


Asunto(s)
Conservación de los Recursos Naturales , Agricultura Forestal/métodos , Bosques , Cambio Climático , Política Ambiental , Agricultura Forestal/tendencias , Riesgo , Suecia , Incertidumbre
16.
Ambio ; 45 Suppl 2: 124-39, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26744048

RESUMEN

Whereas there is evidence that mixed-species approaches to production forestry in general can provide positive outcomes relative to monocultures, it is less clear to what extent multiple benefits can be derived from specific mixed-species alternatives. To provide such insights requires evaluations of an encompassing suite of ecosystem services, biodiversity, and forest management considerations provided by specific mixtures and monocultures within a region. Here, we conduct such an assessment in Sweden by contrasting even-aged Norway spruce (Picea abies)-dominated stands, with mixed-species stands of spruce and birch (Betula pendula or B. pubescens), or spruce and Scots pine (Pinus sylvestris). By synthesizing the available evidence, we identify positive outcomes from mixtures including increased biodiversity, water quality, esthetic and recreational values, as well as reduced stand vulnerability to pest and pathogen damage. However, some uncertainties and risks were projected to increase, highlighting the importance of conducting comprehensive interdisciplinary evaluations when assessing the pros and cons of mixtures.


Asunto(s)
Conservación de los Recursos Naturales , Agricultura Forestal/métodos , Cambio Climático , Ecosistema , Incendios , Control de Plagas , Suecia , Calidad del Agua , Viento
17.
Ambio ; 45 Suppl 2: 152-62, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26744050

RESUMEN

Protecting water quality in forested regions is increasingly important as pressures from land-use, long-range transport of air pollutants, and climate change intensify. Maintaining forest industry without jeopardizing sustainability of surface water quality therefore requires new tools and approaches. Here, we show how forest management can be optimized by incorporating landscape sensitivity and hydrological connectivity into a framework that promotes the protection of water quality. We discuss how this approach can be operationalized into a hydromapping tool to support forestry operations that minimize water quality impacts. We specifically focus on how hydromapping can be used to support three fundamental aspects of land management planning including how to (i) locate areas where different forestry practices can be conducted with minimal water quality impact; (ii) guide the off-road driving of forestry machines to minimize soil damage; and (iii) optimize the design of riparian buffer zones. While this work has a boreal perspective, these concepts and approaches have broad-scale applicability.


Asunto(s)
Agricultura Forestal/métodos , Calidad del Agua , Biomasa , Conservación de los Recursos Naturales , Monitoreo del Ambiente , Política Ambiental , Agua Subterránea/química , Suecia
18.
Ambio ; 45 Suppl 2: 203-13, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26744054

RESUMEN

Continuous-cover forestry (CCF) has been recognized for the production of multiple ecosystem services, and is seen as an alternative to clear-cut forestry (CF). Despite the increasing interest, it is still not well described how CCF would affect the carbon balance and the resulting climate benefit from the forest in relation to CF. This study compares carbon balances of CF and CCF, applied as two alternative land-use strategies for a heterogeneous Norway spruce (Picea abies) stand. We use a set of models to analyze the long-term effects of different forest management and wood use strategies in Sweden on carbon dioxide emissions and carbon stock changes. The results show that biomass growth and yield is more important than the choice of silvicultural system per se. When comparing CF and CCF assuming similar growth, extraction and product use, only minor differences in long-term climate benefit were found between the two principally different silvicultural systems.


Asunto(s)
Carbono/análisis , Agricultura Forestal/métodos , Modelos Teóricos , Biomasa , Suecia
19.
J Environ Manage ; 154: 284-92, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25745845

RESUMEN

Over previous decades new environmental measures have been implemented in forestry. In Fennoscandia, forest management practices were modified to set aside conservation areas and to retain trees at final felling. In this study we simulated the long-term effects of set-aside establishment and tree retention practices on the future availability of large trees and dead wood, two forest structures of documented importance to biodiversity conservation. Using a forest decision support system (Heureka), we projected the amounts of these structures over 200 years in two managed north Swedish landscapes, under management scenarios with and without set-asides and tree retention. In line with common best practice, we simulated set-asides covering 5% of the productive area with priority to older stands, as well as ∼5% green-tree retention (solitary trees and forest patches) including high-stump creation at final felling. We found that only tree retention contributed to substantial increases in the future density of large (DBH ≥35 cm) deciduous trees, while both measures made significant contributions to the availability of large conifers. It took more than half a century to observe stronger increases in the densities of large deciduous trees as an effect of tree retention. The mean landscape-scale volumes of hard dead wood fluctuated widely, but the conservation measures yielded values which were, on average over the entire simulation period, about 2.5 times as high as for scenarios without these measures. While the density of large conifers increased with time in the landscape initially dominated by younger forest, best practice conservation measures did not avert a long-term decrease in large conifer density in the landscape initially comprised of more old forest. Our results highlight the needs to adopt a long temporal perspective and to consider initial landscape conditions when evaluating the large-scale effects of conservation measures on forest biodiversity.


Asunto(s)
Biodiversidad , Agricultura Forestal/métodos , Árboles , Conservación de los Recursos Naturales , Ecosistema , Humanos , Suecia , Madera
20.
Plant Cell Environ ; 33(5): 851-62, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20051040

RESUMEN

Photosystem II (PSII) activation after hydration with water or humid air was measured in four hydrophilic and a generalist lichen to test the hypothesis that slow activation might explain habitat restriction in the former group. For the hydrophilic species, activation was after 4 h nearly completed in Lobaria amplissima and Platismatia norvegica, while only c. 50% for Bryoria bicolor and Usnea longissima. The generalist Platismatia glauca was activated instantaneously. The effect of this on lichen field performance was investigated using a dynamic model separating the two water sources rain and humid air. Model simulations were made using the species-specific characteristics and climate data from 12 stream microhabitats. For U. longissima, slow PSII activation could reduce realized photosynthesis by a factor of five. Bryoria bicolor was almost as severely affected, while P. norvegica displayed moderate reductions. Lobaria amplissima displayed longer realized activity periods even in unfavourable microclimates, possibly because of a higher water loss resistance. Both close proximity to streams and presence of turbulent water had a positive impact on realized activity among the slowly activated species, coinciding with observed distribution patterns of hydrophilic species. The results presented here may thus partly explain observed habitat restrictions of rare hydrophilic lichens.


Asunto(s)
Ecosistema , Líquenes/fisiología , Modelos Biológicos , Agua/fisiología , Simulación por Computador , Desecación , Humedad , Microclima , Fotosíntesis , Complejo de Proteína del Fotosistema II/fisiología , Lluvia , Ríos , Especificidad de la Especie , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...