Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 26(10): 107764, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37736038

RESUMEN

Pandemic SARS-CoV-2 has undergone rapid evolution resulting in the emergence of many variants with mutations in the spike protein, some of which appear to evade antibody neutralization, transmit more efficiently, and/or exhibit altered virulence. This raises significant concerns regarding the efficacy of anti-S monoclonal antibody-based therapeutics which have failed against variant SARS-CoV-2 viruses. To address this concern, SAB-185, a human anti-SARS-CoV-2 polyclonal antibody was generated in the DiversitAb platform. SAB-185 exhibited equivalent, robust in vitro neutralization for Munich, Alpha, Beta, Gamma, and Δ144-146 variants and, although diminished, retained PRNT50 and PRNT80 neutralization endpoints for Delta and Omicron variants. Human ACE2 transgenic Syrian hamsters, which exhibit lethal SARS-CoV-2 disease, were protected from mortality after challenge with the Munich, Alpha, Beta, Delta, and Δ144-146 variants and clinical signs after non-lethal Omicron BA.1 infection. This suggests that SAB-185 may be an effective immunotherapy even in the presence of ongoing viral mutation.

2.
PLoS Pathog ; 18(6): e1009946, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35696423

RESUMEN

Venezuelan equine encephalitis virus (VEEV) is a positively-stranded RNA arbovirus of the genus Alphavirus that causes encephalitis in humans. Cynomolgus macaques are a relevant model of the human disease caused by VEEV and are useful in exploring pathogenic mechanisms and the host response to VEEV infection. Macaques were exposed to small-particle aerosols containing virus derived from an infectious clone of VEEV strain INH-9813, a subtype IC strain isolated from a human infection. VEEV-exposed macaques developed a biphasic fever after infection similar to that seen in humans. Maximum temperature deviation correlated with the inhaled dose, but fever duration did not. Neurological signs, suggestive of virus penetration into the central nervous system (CNS), were predominantly seen in the second febrile period. Electroencephalography data indicated a statistically significant decrease in all power bands and circadian index during the second febrile period that returned to normal after fever resolved. Intracranial pressure increased late in the second febrile period. On day 6 post-infection macaques had high levels of MCP-1 and IP-10 chemokines in the CNS, as well as a marked increase of T lymphocytes and activated microglia. More than four weeks after infection, VEEV genomic RNA was found in the brain, cerebrospinal fluid and cervical lymph nodes. Pro-inflammatory cytokines & chemokines, infiltrating leukocytes and pathological changes were seen in the CNS tissues of macaques euthanized at these times. These data are consistent with persistence of virus replication and/or genomic RNA and potentially, inflammatory sequelae in the central nervous system after resolution of acute VEEV disease.


Asunto(s)
Virus de la Encefalitis Equina Venezolana , Encefalomielitis Equina Venezolana , Animales , Sistema Nervioso Central , Virus de la Encefalitis Equina Venezolana/genética , Caballos/genética , Inflamación , Macaca fascicularis , ARN Viral/genética
3.
bioRxiv ; 2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34341790

RESUMEN

Pandemic SARS CoV-2 has been undergoing rapid evolution during spread throughout the world resulting in the emergence of many Spike protein variants, some of which appear to either evade antibody neutralization, transmit more efficiently, or potentially exhibit increased virulence. This raises significant concerns regarding the long-term efficacy of protection elicited after primary infection and/or from vaccines derived from single virus Spike (S) genotypes, as well as the efficacy of anti-S monoclonal antibody based therapeutics. Here, we used fully human polyclonal human IgG (SAB-185), derived from hyperimmunization of transchromosomic bovines with DNA plasmids encoding the SARS-CoV-2 Wa-1 strain S protein or purified ectodomain of S protein, to examine the neutralizing capacity of SAB-185 in vitro and the protective efficacy of passive SAB-185 antibody (Ab) transfer in vivo . The Ab preparation was tested for neutralization against five variant SARS-CoV-2 strains: Munich (Spike D614G), UK (B.1.1.7), Brazil (P.1) and SA (B.1.3.5) variants, and a variant isolated from a chronically infected immunocompromised patient (Spike Δ144-146). For the in vivo studies, we used a new human ACE2 (hACE2) transgenic Syrian hamster model that exhibits lethality after SARS-Cov-2 challenge and the Munich, UK, SA and Δ144-146 variants. SAB-185 neutralized each of the SARS-CoV-2 strains equivalently on Vero E6 cells, however, a control convalescent human serum sample was less effective at neutralizing the SA variant. In the hamster model, prophylactic SAB-185 treatment protected the hamsters from fatal disease and minimized clinical signs of infection. These results suggest that SAB-185 may be an effective treatment for patients infected with SARS CoV-2 variants.

4.
PLoS Pathog ; 17(2): e1009308, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33534855

RESUMEN

Aerosol exposure to eastern equine encephalitis virus (EEEV) can trigger a lethal viral encephalitis in cynomolgus macaques which resembles severe human disease. Biomarkers indicative of central nervous system (CNS) infection by the virus and lethal outcome of disease would be useful in evaluating potential medical countermeasures, especially for therapeutic compounds. To meet requirements of the Animal Rule, a better understanding of the pathophysiology of EEEV-mediated disease in cynomolgus macaques is needed. In this study, macaques given a lethal dose of clone-derived EEEV strain V105 developed a fever between 2-3 days post infection (dpi) and succumbed to the disease by 6 dpi. At the peak of the febrile phase, there was a significant increase in the delta electroencephalography (EEG) power band associated with deep sleep as well as a sharp rise in intracranial pressure (ICP). Viremia peaked early after infection and was largely absent by the onset of fever. Granulocytosis and elevated plasma levels of IP-10 were found early after infection. At necropsy, there was a one hundred- to one thousand-fold increase in expression of traumatic brain injury genes (LIF, MMP-9) as well as inflammatory cytokines and chemokines (IFN-γ, IP-10, MCP-1, IL-8, IL-6) in the brain tissues. Phenotypic analysis of leukocytes entering the brain identified cells as primarily lymphoid (T, B, NK cells) with lower levels of infiltrating macrophages and activated microglia. Massive amounts of infectious virus were found in the brains of lethally-infected macaques. While no infectious virus was found in surviving macaques, quantitative PCR did find evidence of viral genomes in the brains of several survivors. These data are consistent with an overwhelming viral infection in the CNS coupled with a tremendous inflammatory response to the infection that may contribute to the disease outcome. Physiological monitoring of EEG and ICP represent novel methods for assessing efficacy of vaccines or therapeutics in the cynomolgus macaque model of EEEV encephalitis.


Asunto(s)
Aerosoles/efectos adversos , Biomarcadores/análisis , Encéfalo/inmunología , Encéfalo/patología , Virus de la Encefalitis Equina del Este/patogenicidad , Encefalitis Viral/inmunología , Fiebre/inmunología , Animales , Encéfalo/virología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Encefalitis Viral/patología , Encefalitis Viral/virología , Femenino , Fiebre/patología , Fiebre/virología , Macaca fascicularis , Masculino
5.
PLoS One ; 15(6): e0232381, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32584818

RESUMEN

Alphaviruses such as Venezuelan equine encephalitis virus (VEEV) and Eastern equine encephalitis virus (EEEV) are arboviruses that can cause severe zoonotic disease in humans. Both VEEV and EEEV are highly infectious when aerosolized and can be used as biological weapons. Vaccines and therapeutics are urgently needed, but efficacy determination requires animal models. The cynomolgus macaque (Macaca fascicularis) provides a relevant model of human disease, but questions remain whether vaccines or therapeutics can mitigate CNS infection or disease in this model. The documentation of alphavirus encephalitis in animals relies on traditional physiological biomarkers and behavioral/neurological observations by veterinary staff; quantitative measurements such as electroencephalography (EEG) and intracranial pressure (ICP) can recapitulate underlying encephalitic processes. We detail a telemetry implantation method suitable for continuous monitoring of both EEG and ICP in awake macaques, as well as methods for collection and analysis of such data. We sought to evaluate whether changes in EEG/ICP suggestive of CNS penetration by virus would be seen after aerosol exposure of naïve macaques to VEEV IC INH9813 or EEEV V105 strains compared to mock-infection in a cohort of twelve adult cynomolgus macaques. Data collection ran continuously from at least four days preceding aerosol exposure and up to 50 days thereafter. EEG signals were processed into frequency spectrum bands (delta: [0.4 - 4Hz); theta: [4 - 8Hz); alpha: [8-12Hz); beta: [12-30] Hz) and assessed for viral encephalitis-associated changes against robust background circadian variation while ICP data was assessed for signal fidelity, circadian variability, and for meaningful differences during encephalitis. Results indicated differences in delta, alpha, and beta band magnitude in infected macaques, disrupted circadian rhythm, and proportional increases in ICP in response to alphavirus infection. This novel enhancement of the cynomolgus macaque model offers utility for timely determination of onset, severity, and resolution of encephalitic disease and for the evaluation of vaccine and therapeutic candidates.


Asunto(s)
Infecciones por Alphavirus/patología , Encéfalo/fisiología , Encefalitis Viral/patología , Presión Intracraneal/fisiología , Alphavirus/aislamiento & purificación , Alphavirus/patogenicidad , Infecciones por Alphavirus/metabolismo , Animales , Biomarcadores/metabolismo , Ritmo Circadiano , Modelos Animales de Enfermedad , Electroencefalografía/métodos , Encefalitis Viral/metabolismo , Femenino , Macaca , Masculino , Índice de Severidad de la Enfermedad , Telemetría
6.
Pathogens ; 8(4)2019 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-31744158

RESUMEN

Eastern (EEEV) and Venezuelan (VEEV) equine encephalitis viruses (EEVs) are related, (+) ssRNA arboviruses that can cause severe, sometimes fatal, encephalitis in humans. EEVs are highly infectious when aerosolized, raising concerns for potential use as biological weapons. No licensed medical countermeasures exist; given the severity/rarity of natural EEV infections, efficacy studies require animal models. Cynomolgus macaques exposed to EEV aerosols develop fever, encephalitis, and other clinical signs similar to humans. Fever is nonspecific for encephalitis in macaques. Electrocardiography (ECG) metrics may predict onset, severity, or outcome of EEV-attributable disease. Macaques were implanted with thermometry/ECG radiotransmitters and exposed to aerosolized EEV. Data was collected continuously, and repeated-measures ANOVA and frequency-spectrum analyses identified differences between courses of illness and between pre-exposure and post-exposure states. EEEV-infected macaques manifested widened QRS-intervals in severely ill subjects post-exposure. Moreover, QT-intervals and RR-intervals decreased during the febrile period. VEEV-infected macaques suffered decreased QT-intervals and RR-intervals with fever onset. Frequency-spectrum analyses revealed differences in the fundamental frequencies of multiple metrics in the post-exposure and febrile periods compared to baseline and confirmed circadian dysfunction. Heart rate variability (HRV) analyses revealed diminished variability post-exposure. These analyses support using ECG data alongside fever and clinical laboratory findings for evaluating medical countermeasure efficacy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...