Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 15(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37046850

RESUMEN

We had previously shown that THY1 (CD90) is a tumor suppressor in nasopharyngeal carcinoma (NPC) and that its down-regulation and loss of expression are associated with tumor metastasis, yet the mechanism leading to such effects remains unknown. In this study we show that tumor invasion could be suppressed by THY1 via adherens junction formation in a few NPC cell lines, and knockdown of THY1 would disrupt this cell-cell adhesion phenotype. Mechanistically, the activity of the SRC family kinase (SFK) member, SRC, and canonical Wnt signaling were dramatically reduced when THY1 was constitutively expressed. Previous studies by others have found that high levels of SRC activity in NPCs are associated with EMT and a poor prognosis. We hypothesized that THY1 can suppress tumor invasion in NPC via inhibition of SRC. By gene silencing of SRC, we found that the in vitro NPC cell invasion was significantly reduced and adherens junctions were restored. Through proteomic analysis, we identified that platelet-derived growth factor receptor ß (PDGF-Rß) and protein tyrosine phosphatase nonreceptor type 22 (PTPN22) are novel and potential binding partners of THY1, which were subsequently verified by co-immunoprecipitation (co-IP) analysis. The ligand of PDGF-Rß (PDGF-BB) could highly induce SRC activation and NPC cell invasion, which could be almost completely suppressed by THY1 expression. On the other hand, the PTPN22 siRNA could enhance both the SRC activities and the cell invasion and could also disrupt the adherens junctions in the THY1-expressing NPC cells; the original THY1-induced phenotypes were reverted when the PTPN22 expression was reduced. Together, our results identified that PTPN22 is essential for THY1 to suppress cell invasion and SRC activity, maintain tight adherens junctions, and prevent NPC metastasis. These results suggested that PDGF-Rß and SRC can be used as drug targets for suppressing NPC metastasis. Indeed, our in vivo assay using the SRC inhibitor KX2-391, clearly showed that inhibition of SRC signaling can prevent the metastasis of NPC, indicating that targeting SRC can be a promising approach to control the NPC progression.

2.
Theranostics ; 13(2): 458-471, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36632221

RESUMEN

Nasopharyngeal carcinoma (NPC) is a diverse cancer with no well-defined tumor antigen, associated with oncogenic Epstein-Barr Virus (EBV), and with usually late-stage diagnosis and survival <40%. Current radiotherapy and chemotherapy have low effectiveness and cause adverse effects, which calls for the need of new therapy. In this regard, adoptive immunotherapy using γδ T cells has potential, but needs to be coupled with butyrophilin 2A1 and 3A1 protein expression to achieve tumoricidal effect. Methods: Human γδ T cells were expanded (with Zol or PTA) and used for cytotoxicity assay against NPC cells, which were treated with the EBV EBNA1-targeting peptide (L2)P4. Effect of (L2)P4 on BTN2A1/BTN3A1 expression in NPC cells was examined by flow cytometry and Western blot. An NPC-bearing NSG mice model was established to test the effectiveness of P4 and adoptive γδ T cells. Immunofluorescence was performed on NPC tissue sections to examine the presence of γδ T cells and expression of BTN2A1 and BTN3A1. EBV gene expression post-(L2)P4 treatment was assessed by qRT-PCR, and the relationship of LMP1, NLRC5 and BTN2A1/BTN3A1 was examined by transfection, reporter assay, Western blot, and inhibition experiments. Results: Zol- or PTA-expanded the Vδ2 subset of γδ T cells that exerted killing against certain NPC cells. (L2)P4 reactivates latent EBV, which increased BTN2A1 and BTN3A1 expression and conferred higher susceptibility towards Vδ2 T cells cytotoxicity in vitro, as well as enhanced tumor regression in vivo by adoptive transfer of Vδ2 T cells. Mechanistically, (L2)P4 induced EBV LMP1, leading to IFN-γ/p-JNK and NLRC5 activation, and subsequently stimulated the expression of BTN2A1 and BTN3A1. Conclusions: This study demonstrated the effectiveness of using the EBV-targeting probe (L2)P4 and adoptive γδ T cells as a promising combinatorial immunotherapy against NPC. The identification of the LMP1-IFN-γ/p-JNK-NLRC5-BTN2A1/BTN3A1 axis may lead to new insight and therapeutic targets against NPC and other EBV+ tumors.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Neoplasias Nasofaríngeas , Linfocitos T Citotóxicos , Animales , Humanos , Ratones , Antígenos CD , Butirofilinas , Infecciones por Virus de Epstein-Barr/complicaciones , Péptidos y Proteínas de Señalización Intracelular , Carcinoma Nasofaríngeo/inmunología , Carcinoma Nasofaríngeo/terapia , Carcinoma Nasofaríngeo/virología , Neoplasias Nasofaríngeas/inmunología , Neoplasias Nasofaríngeas/terapia , Neoplasias Nasofaríngeas/virología , Inmunoterapia
3.
Cancers (Basel) ; 14(13)2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35804897

RESUMEN

Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-associated malignancy ranking as the 23rd most common cancer globally, while its incidence rate ranked the 9th in southeast Asia. Tumor metastasis is the dominant cause for treatment failure in NPC and metastatic NPC is yet incurable. The Wnt/ß-catenin signaling pathway plays an important role in many processes such as cell proliferation, differentiation, epithelial-mesenchymal transition (EMT), and self-renewal of stem cells and cancer stem cells (CSCs). Both the EMT process and CSCs are believed to play a critical role in cancer metastasis. We here investigated whether the specific CBP/ß-catenin Wnt antagonist, IGC-001, affects the metastasis of NPC cells. We found that ICG-001 treatment could reduce the adhesion capability of NPC cells to extracellular matrix and to capillary endothelial cells and reduce the tumor cell migration and invasion, events which are closely associated with distant metastasis. Through a screening of EMT and CSC-related microRNAs, it was found that miR-134 was consistently upregulated by ICG-001 treatment in NPC cells. Very few reports have mentioned the functional role of miR-134 in NPC, except that the expression was found to be downregulated in NPC. Transient transfection of miR-134 into NPC cells reduced their cell adhesion, migration, and invasion capability, but did not affect the growth of CSC-enriched tumor spheres. Subsequently, we found that the ICG-001-induced miR-134 expression resulting in downregulation of integrin ß1 (ITGB1). Such downregulation reduced cell adhesion and migration capability, as demonstrated by siRNA-mediated knockdown of ITGB1. Direct targeting of ITGB1 by miR-134 was confirmed by the 3'-UTR luciferase assay. Lastly, using an in vivo lung metastasis assay, we showed that ICG-001 transient overexpression of miR-134 or stable overexpression of miR-134 could significantly reduce the lung metastasis of NPC cells. Taken together, we present here evidence that modulation of Wnt/ß-catenin signaling pathway could inhibit the metastasis of NPC through the miR-134/ITGB1 axis.

4.
JACS Au ; 1(7): 1034-1043, 2021 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-34467347

RESUMEN

A lanthanide-based peptide-directed bioprobe LnP19 (Ln = Eu or Yb) is designed as an impressive example of a small molecule-based dual-functional probe for the EBV oncoprotein LMP1. The peptide P19 (Pra-KAhx-K-LDLALK-FWLY-K-IVMSDKW-K-RrRK) is designed to selectively bind to LMP1 by mimicking its TM1 region during oligomerization in lipid rafts while signal transduction is significantly suppressed. Immunofluorescence imaging and Western blotting results reveal that P19 can effectively inactivate the oncogenic cellular pathway nuclear factor κB (NF-κB) and contribute to a selective cytotoxic effect on LMP1-positive cells. By conjugation with cyclen-based europium(III) and ytterbium(III) complexes, EuP19 and YbP19 were constructed to offer visible and near-infrared LMP1-targeted imaging and cancer monitoring. In addition to the ability to target and inhibit LMP1 and to selective inhibit LMP1-positive cells, selective growth inhibition toward the LMP1-positive tumor by LnP19 is also demonstrated.

5.
Adv Sci (Weinh) ; 8(5): e2002919, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33717845

RESUMEN

Using Epstein-Barr virus (EBV)-induced cancer cells and HeLa cells as a comparative study model, a novel and safe dual-EBV-oncoproteins-targeting pH-responsive peptide engineering, coating, and guiding approach to achieve precision targeting and treatment strategy against EBV-associated cancers is introduced. Individual functional peptide sequences that specifically bind to two overexpressed EBV-specific oncoproteins, EBNA1 (a latent cellular protein) and LMP1 (a transmembrane protein), are engineered in three different ways and incorporated with a pH-sensitive tumor microenvironment (TME)-cleavable linker onto the upconversion nanoparticles (UCNP) NaGdF4:Yb3+, Er3+@NaGdF4 (UCNP-P n , n = 5, 6, and 7). A synergistic combination of the transmembrane LMP1 targeting ability and the pH responsiveness of UCNP-P n is found to give specific cancer differentiation with higher cellular uptake and accumulation in EBV-infected cells, thus a lower dose is needed and the side effects and health risks from treatment would be greatly reduced. It also gives responsive UC signal enhancement upon targeted dual-protein binding and shows efficacious EBV cancer inhibition in vitro and in vivo. This is the first example of simultaneous imaging and inhibition of two EBV latent proteins, and serves as a blueprint for next-generation peptide-guided precision delivery nanosystem for the safe monitoring and treatment against one specific cancer.

6.
Front Oncol ; 11: 640207, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33718235

RESUMEN

Nasopharyngeal carcinoma (NPC) is closely associated with Epstein-Barr virus (EBV) infection. It is also characterized by heavy infiltration with non-malignant leucocytes. The EBV-encoded latent membrane protein 1 (LMP1) is believed to play an important role in NPC pathogenesis by virtue of its ability to activate multiple cell signaling pathways which collectively promote cell proliferation and survival, angiogenesis, invasiveness, and aerobic glycolysis. LMP1 also affects cell-cell interactions, antigen presentation, and cytokine and chemokine production. Here, we discuss how LMP1 modulates local immune responses that contribute to the establishment of the NPC tumor microenvironment. We also discuss strategies for targeting the LMP1 protein as a novel therapy for EBV-driven malignancies.

7.
Int J Mol Sci ; 21(15)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32752071

RESUMEN

The Wnt signaling pathway is one of the major signaling pathways used by cancer stem cells (CSC). Ecotropic Viral Integration Site 1 (EVI1) has recently been shown to regulate oncogenic development of tumor cells by interacting with multiple signaling pathways, including the Wnt signaling. In the present study, we found that the Wnt modulator ICG-001 could inhibit the expression of EVI1 in nasopharyngeal carcinoma (NPC) cells. Results from loss-of-function and gain-of-function studies revealed that EVI1 expression positively regulated both NPC cell migration and growth of CSC-enriched tumor spheres. Subsequent studies indicated ICG-001 inhibited EVI1 expression via upregulated expression of miR-96. Results from EVI1 3'UTR luciferase reporter assay confirmed that EVI1 is a direct target of miR-96. Further mechanistic studies revealed that ICG-001, overexpression of miR-96, or knockdown of EVI1 expression could restore the expression of miR-449a. The suppressive effect of miR-449a on the cell migration and tumor sphere formation was confirmed in NPC cells. Taken together, the miR-96/EVI1/miR-449a axis is a novel pathway involved in ICG-001-mediated inhibition of NPC cell migration and growth of the tumor spheres.


Asunto(s)
Proteína del Locus del Complejo MDS1 y EV11/genética , MicroARNs/genética , Carcinoma Nasofaríngeo/genética , Regiones no Traducidas 3' , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Carcinoma Nasofaríngeo/patología , Células Madre Neoplásicas/metabolismo , Vía de Señalización Wnt/genética
8.
Cancers (Basel) ; 12(7)2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32708965

RESUMEN

Epstein-Barr virus (EBV) is closely linked to the development of a number of human cancers. EBV-associated malignancies are characterized by a restricted pattern of viral latent protein expression which is sufficient for the virus to both initiate and sustain cell growth and to protect virus-infected cells from immune attack. Expression of these EBV proteins in malignant cells provides an attractive target for therapeutic intervention. Among the viral proteins expressed in the EBV-associated epithelial malignancies, the protein encoded by the BamHI-A rightward frame 1 (BARF1) is of particular interest. BARF1 is a viral oncoprotein selectively expressed in latently infected epithelial cancers, nasopharyngeal carcinoma (NPC) and EBV-positive gastric cancer (EBV-GC). Here, we review the roles of BARF1 in oncogenesis and immunomodulation. We also discuss potential strategies for targeting the BARF1 protein as a novel therapy for EBV-driven epithelial cancers.

9.
Front Oncol ; 10: 600, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528868

RESUMEN

Nasopharyngeal carcinoma (NPC) is consistently associated with Epstein-Barr virus (EBV) infection in regions in which it is endemic, including Southern China and Southeast Asia. The high mortality rates of NPC patients with advanced and recurrent disease highlight the urgent need for effective treatments. While recent genomic studies have revealed few druggable targets, the unique interaction between the EBV infection and host cells in NPC strongly implies that targeting EBV may be an efficient approach to cure this virus-associated cancer. Key features of EBV-associated NPC are the persistence of an episomal EBV genome and the requirement for multiple viral latent gene products to enable malignant transformation. Many translational studies have been conducted to exploit these unique features to develop pharmaceutical agents and therapeutic strategies that target EBV latent proteins and induce lytic reactivation in NPC. In particular, inhibitors of the EBV latent protein EBNA1 have been intensively explored, because of this protein's essential roles in maintaining EBV latency and viral genome replication in NPC cells. In addition, recent advances in chemical bioengineering are driving the development of therapeutic agents targeting the critical functional regions of EBNA1. Promising therapeutic effects of the resulting EBNA1-specific inhibitors have been shown in EBV-positive NPC tumors. The efficacy of multiple classes of EBV lytic inducers for NPC cytolytic therapy has also been long investigated. However, the lytic-induction efficiency of these compounds varies among different EBV-positive NPC models in a cell-context-dependent manner. In each tumor, NPC cells can evolve and acquire somatic changes to maintain EBV latency during cancer progression. Unfortunately, the poor understanding of the cellular mechanisms regulating EBV latency-to-lytic switching in NPC cells limits the clinical application of EBV cytolytic treatment. In this review, we discuss the potential approaches for improvement of the above-mentioned EBV-targeting strategies.

10.
Oncogene ; 39(20): 4061-4076, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32214200

RESUMEN

A Rho GTPase-activating protein (RhoGAP), deleted in liver cancer 1 (DLC1), is known to function as a tumor suppressor in various cancer types; however, whether DLC1 is a tumor-suppressor gene or an oncogene in melanoma remains to be clarified. Here we revealed that high DLC1 expression was detected in most of the melanoma tissues where it was localized in both the nuclei and the cytoplasm. Functional studies unveiled that DLC1 was both required and sufficient for melanoma growth and metastasis. These tumorigenic events were mediated by nuclear-localized DLC1 in a RhoGAP-independent manner. Mechanistically, mass spectrometry analysis identified a DLC1-associated protein, FOXK1 transcription factor, which mediated oncogenic events in melanoma by translocating and retaining DLC1 into the nucleus. RNA-sequencing profiling studies further revealed MMP9 as a direct target of FOXK1 through DLC1-regulated promoter occupancy for cooperative activation of MMP9 expression to promote melanoma invasion and metastasis. Concerted action of DLC1-FOXK1 in MMP9 gene regulation was further supported by their highly correlated expression in melanoma patients' samples and cell lines. Together, our results not only unravel a mechanism by which nuclear DLC1 functions as an oncogene in melanoma but also suggest an unexpected role of RhoGAP protein in transcriptional regulation.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Metaloproteinasa 9 de la Matriz/biosíntesis , Melanoma/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Línea Celular Tumoral , Factores de Transcripción Forkhead/genética , Proteínas Activadoras de GTPasa/genética , Humanos , Metaloproteinasa 9 de la Matriz/genética , Melanoma/genética , Melanoma/patología , Proteínas Supresoras de Tumor/genética
11.
Proc Natl Acad Sci U S A ; 116(52): 26614-26624, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31822610

RESUMEN

Epstein-Barr nuclear antigen 1 (EBNA1) plays a vital role in the maintenance of the viral genome and is the only viral protein expressed in nearly all forms of Epstein-Barr virus (EBV) latency and EBV-associated diseases, including numerous cancer types. To our knowledge, no specific agent against EBV genes or proteins has been established to target EBV lytic reactivation. Here we report an EBNA1- and Zn2+-responsive probe (ZRL5P4) which alone could reactivate the EBV lytic cycle through specific disruption of EBNA1. We have utilized the Zn2+ chelator to further interfere with the higher order of EBNA1 self-association. The bioprobe ZRL5P4 can respond independently to its interactions with Zn2+ and EBNA1 with different fluorescence changes. It can selectively enter the nuclei of EBV-positive cells and disrupt the oligomerization and oriP-enhanced transactivation of EBNA1. ZRL5P4 can also specifically enhance Dicer1 and PML expression, molecular events which had been reported to occur after the depletion of EBNA1 expression. Importantly, we found that treatment with ZRL5P4 alone could reactivate EBV lytic induction by expressing the early and late EBV lytic genes/proteins. Lytic induction is likely mediated by disruption of EBNA1 oligomerization and the subsequent change of Dicer1 expression. Our probe ZRL5P4 is an EBV protein-specific agent that potently reactivates EBV from latency, leading to the shrinkage of EBV-positive tumors, and our study also suggests the association of EBNA1 oligomerization with the maintenance of EBV latency.

12.
Phytomedicine ; 63: 153058, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31394414

RESUMEN

BACKGROUND: Sulforaphane (SFN), a natural compound present in cruciferous vegetable, has been shown to possess anti-cancer activities. Cancer stem cell (CSC) in bulk tumor is generally considered as treatment resistant cell and involved in cancer recurrence. The effects of SFN on nasopharyngeal carcinoma (NPC) CSCs have not yet been explored. PURPOSE: The present study aims to examine the anti-tumor activities of SFN on NPC cells with CSC-like properties and the underlying mechanisms. METHODS: NPC cells growing in monolayer culture, CSCs-enriched NPC tumor spheres, and also the NPC nude mice xenograft were used to study the anti-tumor activities of SFN on NPC. The population of cells expressing CSC-associated markers was evaluated using flow cytometry and aldehyde dehydrogenase (ALDH) activity assay. The effect of DNA methyltransferase 1 (DNMT1) on the growth of NPC cells was analyzed by using small interfering RNA (siRNA)-mediated silencing method. RESULTS: SFN was found to inhibit the formation of CSC-enriched NPC tumor spheres and reduce the population of cells with CSC-associated properties (SRY (Sex determining Region Y)-box 2 (SOX2) and ALDH). In the functional study, SFN was found to restore the expression of Wnt inhibitory factor 1 (WIF1) and the effect was accompanied with the downregulation of DNMT1. The functional activities of WIF1 and DNMT1 were confirmed using exogenously added recombinant WIF1 and siRNA knockdown of DNMT1. Moreover, SFN was found to inhibit the in vivo growth of C666-1 cells and enhance the anti-tumor effects of cisplatin. CONCLUSION: Taken together, we demonstrated that SFN could suppress the growth of NPC cells via the DNMT1/WIF1 axis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antineoplásicos Fitogénicos/farmacología , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Isotiocianatos/farmacología , Carcinoma Nasofaríngeo/tratamiento farmacológico , Neoplasias Nasofaríngeas/tratamiento farmacológico , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Antineoplásicos Fitogénicos/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Brassicaceae/química , Línea Celular Tumoral , Cisplatino/administración & dosificación , ADN (Citosina-5-)-Metiltransferasa 1/genética , Humanos , Isotiocianatos/administración & dosificación , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Sulfóxidos , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Sci Rep ; 9(1): 12064, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31427673

RESUMEN

We and others have previously shown that the canonical nuclear factor kappa-B (NF-κB) pathway is essential to nasopharyngeal carcinoma (NPC) tumor development and angiogenesis, suggesting that the NF-κB pathway, including its upstream modulators and downstream effectors, are potential therapeutic targets for NPC. The inhibitor of upstream IκB kinase (IKK), PS1145, is a small molecule which can specifically inhibit the IκB phosphorylation and degradation and the subsequent nuclear translocation of NF-κB. The present study aims to determine the anti-tumor activity of PS1145 on NPC. Our results showed that PS1145 significantly inhibited the growth of tumorigenic NPC cell lines, but not in the normal nasopharyngeal epithelial cell line. Results in the in vivo study showed that low concentration of PS1145 (3 mg/kg) could significantly suppress the subcutaneous tumor formation in the nude mice bearing NPC xenografts. Apparent adverse effects were not observed in the animal study. Drug resistance against PS1145 seems to be associated with the increased levels of active NF-kB p65 and change of expression levels of kruppel-like factor 4. As can be seen, PS1145 appears to be a safe agent for animal experiments and its effects are tumor-specific, and the proteins associated with the drug resistance of PS1145 are implied.


Asunto(s)
Quinasa I-kappa B/genética , Factores de Transcripción de Tipo Kruppel/genética , Carcinoma Nasofaríngeo/tratamiento farmacológico , eIF-2 Quinasa/genética , Animales , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Compuestos Heterocíclicos con 3 Anillos/farmacología , Xenoinjertos , Humanos , Quinasa I-kappa B/antagonistas & inhibidores , Factor 4 Similar a Kruppel , Ratones , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patología , Fosforilación/efectos de los fármacos , Piridinas/farmacología
14.
Oncogene ; 38(24): 4669-4684, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30745576

RESUMEN

EBV infection of preinvasive nasopharyngeal epithelium is believed to be an initiation step during pathogenesis of nasopharyngeal carcinoma (NPC), but the mechanisms remain poorly understood. Here we report a novel mechanism driving NPC metastasis through the EBV-encoded LMP1-mediated metabolic reprogramming, via activation of IGF1-mTORC2 signaling and nuclear acetylation of the Snail promoter by the PDHE1α, an enzyme involved in glucose metabolism. Mechanistically, EBV-LMP1 increases the cellular secretion of IGF1 which promotes phosphorylation of IGF1R to activate mTORC2/AKT signaling linking glucose metabolism to cell motility. LMP1 expression facilitates translocation of mitochondrial PDHE1α into the nucleus in a phosphorylation-dependent manner at Ser293 residue. Functionally, nuclear PDHE1α promotes H3K9 acetylation on the Snail promoter to enhance cell motility, thereby driving cancer metastasis. Importantly, the IGF1/mTORC2/PDHE1α/Snail axis correlates significantly with disease progression and poor prognosis in NPC patients. This study highlights the functional importance of IGF1-mTORC2-PDHE1α signaling mediated by EBV-LMP1 in NPC pathogenesis.


Asunto(s)
Núcleo Celular/metabolismo , Glucosa/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/fisiología , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/patología , Piruvato Deshidrogenasa (Lipoamida)/metabolismo , Proteínas de la Matriz Viral/fisiología , Transporte Activo de Núcleo Celular/genética , Animales , Proliferación Celular/genética , Transformación Celular Viral/fisiología , Células Cultivadas , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/metabolismo , Glucólisis/genética , Herpesvirus Humano 4/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones Desnudos , Ratones SCID , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/virología , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/virología , Metástasis de la Neoplasia , Transporte de Proteínas , Piruvato Deshidrogenasa (Lipoamida)/genética , Transducción de Señal/genética
15.
J Exp Clin Cancer Res ; 38(1): 17, 2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-30642390

RESUMEN

BACKGROUND: In this research, we aimed to resolve contradictory results whether SOX9 plays a positive or negative role in melanoma progression and determine whether SOX9 and its closely related member SOX10 share the same or distinct targets in mediating their functions in melanoma. METHODS: Immunofluorescence, TCGA database and qPCR were used to analyze the correlation between the expression patterns and levels of SOX9, SOX10 and NEDD9 in melanoma patient samples. AlamarBlue, transwell invasion and colony formation assays in melanoma cell lines were conducted to investigate the epistatic relationship between SOX10 and NEDD9, as well as the effects of graded SOX9 expression levels. Lung metastasis was determined by tail vein injection assay. Live cell imaging was conducted to monitor dynamics of melanoma migratory behavior. RHOA and RAC1 activation assays measured the activity of Rho GTPases. RESULTS: High SOX9 expression was predominantly detected in patients with distant melanoma metastases whereas SOX10 was present in the different stages of melanoma. Both SOX9 and SOX10 exhibited distinct but overlapping expression patterns with metastatic marker NEDD9. Accordingly, SOX10 was required for NEDD9 expression, which partly mediated its oncogenic functions in melanoma cells. Compensatory upregulation of SOX9 expression in SOX10-inhibited melanoma cells reduced growth and migratory capacity, partly due to elevated expression of cyclin-dependent kinase inhibitor p21 and lack of NEDD9 induction. Conversely, opposite phenomenon was observed when SOX9 expression was further elevated to a range of high SOX9 expression levels in metastatic melanoma specimens, and that high levels of SOX9 can restore melanoma progression in the absence of SOX10 both in vitro and in vivo. In addition, overexpression of SOX9 can also promote invasiveness of the parental melanoma cells by modulating the expression of various matrix metalloproteinases. SOX10 or high SOX9 expression regulates melanoma mesenchymal migration through the NEDD9-mediated focal adhesion dynamics and Rho GTPase signaling. CONCLUSIONS: These results unravel NEDD9 as a common target for SOX10 or high SOX9 to partly mediate their oncogenic events, and most importantly, reconcile previous discrepancies that suboptimal level of SOX9 expression is anti-metastatic whereas high level of SOX9 is metastatic in a heterogeneous population of melanoma.


Asunto(s)
Dosificación de Gen , Melanoma/genética , Melanoma/patología , Factor de Transcripción SOX9/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Biomarcadores , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Genes Reporteros , Humanos , Metaloproteinasas de la Matriz/metabolismo , Melanoma/metabolismo , Ratones , Metástasis de la Neoplasia , Estadificación de Neoplasias , Fosfoproteínas/genética , Unión Proteica , Factor de Transcripción SOX9/metabolismo , Factores de Transcripción SOXE/genética , Imagen de Lapso de Tiempo , Transactivadores/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína de Unión al GTP rhoA/metabolismo
16.
Int J Oncol ; 54(3): 1010-1020, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30569106

RESUMEN

The Wnt signaling pathway is known to serve an important role in the control of cell migration. The present study analyzed the mechanisms underlying the in vitro modulation of the migration of nasopharyngeal carcinoma (NPC) cells by the CREB­binding protein/catenin antagonist and Wnt modulator ICG­001. The results revealed that ICG­001­mediated inhibition of tumor cell migration involved downregulated mRNA and protein expression of the Wnt target gene cluster of differentiation (CD)44. It was also demonstrated that ICG­001 downregulated the expression of CD44, and this effect was accompanied by restored expression of microRNA (miRNA)­150 in various NPC cell lines. Using a CD44 3'­untranslated region luciferase reporter assay, miR­150 was confirmed to be a novel CD44­targeting miRNA, which could directly target CD44 and subsequently regulate the migration of NPC cells. The present study provides further insight into the inhibition of tumor cell migration through the modulation of miRNA expression by the Wnt modulator ICG­001.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Movimiento Celular/efectos de los fármacos , Receptores de Hialuranos/genética , MicroARNs/genética , Carcinoma Nasofaríngeo/metabolismo , Pirimidinonas/farmacología , Vía de Señalización Wnt , Animales , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Receptores de Hialuranos/antagonistas & inhibidores , Receptores de Hialuranos/metabolismo , Ratones , MicroARNs/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patología , ARN Mensajero/metabolismo , ARN Interferente Pequeño , Vía de Señalización Wnt/efectos de los fármacos
17.
Theranostics ; 8(19): 5307-5319, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30555548

RESUMEN

Epstein-Barr virus (EBV) infects more than 90% of humans worldwide and establishes lifelong latent infection in the hosts. It is closely associated with endemic forms of a wide range of human cancers and directly contributes to the formation of some. Despite its critical role in cancer development, no EBV- or EBV latent protein-targeted therapy is available. The EBV-encoded latent protein, Epstein-Barr nuclear antigen 1 (EBNA1), is expressed in all EBV-associated tumors and acts as the only latent protein in some of these tumors. This versatile protein functions in the maintenance, replication, and segregation of the EBV genome and can therefore serve as an attractive therapeutic target to treat EBV-associated cancers. In the last decades, efforts have been made for designing specific EBNA1 inhibitors to decrease EBNA1 expression or interfere with EBNA1-dependent functions. In this review, we will briefly introduce the salient features of EBNA1, summarize its functional domains, and focus on the recent developments in the identification and design of EBNA1 inhibitors related to various EBNA1 domains as well as discuss their comparative merits.


Asunto(s)
Antivirales/farmacología , Infecciones por Virus de Epstein-Barr/complicaciones , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4/efectos de los fármacos , Neoplasias/virología , Antivirales/aislamiento & purificación , Antivirales/uso terapéutico , Descubrimiento de Drogas/tendencias , Humanos , Neoplasias/terapia
18.
Nanoscale ; 10(33): 15632-15640, 2018 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-30090884

RESUMEN

Non-responsive emission enhancement is the disadvantage of upconversion nanomaterials (UCNM) when compared with conventional organic based agents for molecular imaging. We herein show a new strategy by conjugating NaGdF4:Yb3+,Er3+@NaGdF4 (UCNP) with peptides to achieve responsive UC emission enhancement upon binding to a targeted protein - EBNA1. EBNA1 is a well-known viral latent protein for the EBV-associated cancer. Peptide-coating of the functionalized core-shell nanoparticle diminishes upconverted emission intensity drastically. However, the peptide-coated UCNP shows selective and responsive UC emission enhancement via aggregation with the targeted protein. This phenomenon paves a new way for UCNM in molecular imaging.


Asunto(s)
Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4 , Nanopartículas , Neoplasias/terapia , Neoplasias/virología , Animales , Línea Celular Tumoral , Femenino , Células HeLa , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Imagen Molecular
19.
Sci Rep ; 7(1): 12012, 2017 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-28931826

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNAs that play a crucial role in pathogenesis of human cancers. Several miRNAs have been shown to involve in nasopharyngeal carcinoma (NPC) pathogenesis through alteration of gene networks. A global view of the miRNA expression profile of clinical specimens would be the best way to screen out the possible miRNA candidates that may be involved in disease pathogenesis. In this study, we investigated the expression profiles of miRNA in formalin-fixed paraffin-embedded tissues from patients with undifferentiated NPC versus non-NPC controls using a miRNA real-time PCR platform, which covered a total of 95 cancer-related miRNAs. Hierarchical cluster analysis revealed that NPC and non-NPC controls were clearly segregated. Promisingly, 10 miRNA candidates were differentially expressed. Among them, 9 miRNAs were significantly up-regulated of which miR-205 and miR-196a showed the most up-regulated in NPC with the highest incidence percentage of 94.1% and 88.2%, respectively, while the unique down-regulated miR-150 was further validated in patient sera. Finally, the in vitro gain-of-function and loss-of-function assays revealed that miR-150 can modulate the epithelial-mesenchymal-transition property in NPC/HK-1 cells and led to the cell motility and invasion. miR-150 may be a potential biomarker for NPC and plays a critical role in NPC tumourigenesis.


Asunto(s)
Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Carcinoma Nasofaríngeo/genética , Neoplasias Nasofaríngeas/genética , Adulto , Anciano , Línea Celular Tumoral , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/patología , Metástasis de la Neoplasia
20.
J Virol ; 91(6)2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28053105

RESUMEN

Accumulating evidence indicates that oncogenic viral protein plays a crucial role in activating aerobic glycolysis during tumorigenesis, but the underlying mechanisms are largely undefined. Epstein-Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) is a transmembrane protein with potent cell signaling properties and has tumorigenic transformation property. Activation of NF-κB is a major signaling pathway mediating many downstream transformation properties of LMP1. Here we report that activation of mTORC1 by LMP1 is a key modulator for activation of NF-κB signaling to mediate aerobic glycolysis. NF-κB activation is involved in the LMP1-induced upregulation of glucose transporter 1 (Glut-1) transcription and growth of nasopharyngeal carcinoma (NPC) cells. Blocking the activity of mTORC1 signaling effectively suppressed LMP1-induced NF-κB activation and Glut-1 transcription. Interfering NF-κB signaling had no effect on mTORC1 activity but effectively altered Glut-1 transcription. Luciferase promoter assay of Glut-1 also confirmed that the Glut-1 gene is a direct target gene of NF-κB signaling. Furthermore, we demonstrated that C-terminal activating region 2 (CTAR2) of LMP1 is the key domain involved in mTORC1 activation, mainly through IKKß-mediated phosphorylation of TSC2 at Ser939 Depletion of Glut-1 effectively led to suppression of aerobic glycolysis, inhibition of cell proliferation, colony formation, and attenuation of tumorigenic growth property of LMP1-expressing nasopharyngeal epithelial (NPE) cells. These findings suggest that targeting the signaling axis of mTORC1/NF-κB/Glut-1 represents a novel therapeutic target against NPC.IMPORTANCE Aerobic glycolysis is one of the hallmarks of cancer, including NPC. Recent studies suggest a role for LMP1 in mediating aerobic glycolysis. LMP1 expression is common in NPC. The delineation of essential signaling pathways induced by LMP1 in aerobic glycolysis contributes to the understanding of NPC pathogenesis. This study provides evidence that LMP1 upregulates Glut-1 transcription to control aerobic glycolysis and tumorigenic growth of NPC cells through mTORC1/NF-κB signaling. Our results reveal novel therapeutic targets against the mTORC1/NF-κB/Glut-1 signaling axis in the treatment of EBV-infected NPC.


Asunto(s)
Transportador de Glucosa de Tipo 1/biosíntesis , Herpesvirus Humano 4/fisiología , Interacciones Huésped-Patógeno , Complejos Multiproteicos/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Proteínas de la Matriz Viral/metabolismo , Línea Celular , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...