Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 315
Filtrar
2.
Theranostics ; 14(6): 2490-2525, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646646

RESUMEN

Inflammatory dysregulation is intimately associated with the occurrence and progression of many life-threatening diseases. Accurate detection and timely therapeutic intervention on inflammatory dysregulation are crucial for the effective therapy of inflammation-associated diseases. However, the clinical outcomes of inflammation-involved disorders are still unsatisfactory. Therefore, there is an urgent need to develop innovative anti-inflammatory strategies by integrating emerging technological innovations with traditional therapeutics. Biomedical nanotechnology is one of the promising fields that can potentially transform the diagnosis and treatment of inflammation. In this review, we outline recent advances in biomedical nanotechnology for the diagnosis and treatment of inflammation, with special attention paid to nanosensors and nanoprobes for precise diagnosis of inflammation-related diseases, emerging anti-inflammatory nanotherapeutics, as well as nanotheranostics and combined anti-inflammatory applications. Moreover, the prospects and challenges for clinical translation of nanoprobes and anti-inflammatory nanomedicines are highlighted.


Asunto(s)
Inflamación , Nanotecnología , Nanomedicina Teranóstica , Humanos , Inflamación/diagnóstico , Nanomedicina Teranóstica/métodos , Nanotecnología/métodos , Animales , Antiinflamatorios/uso terapéutico , Antiinflamatorios/administración & dosificación , Nanomedicina/métodos , Nanopartículas
3.
J Affect Disord ; 356: 54-63, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38588724

RESUMEN

BACKGROUND: As the stages of the COVID-19 pandemic evolved, the symptoms of depression, anxiety, and insomnia have increasingly manifested among Chinese college students. The aim of this study is to investigate the relationships between these symptoms through network analysis among Chinese college students during COVID-19. METHOD: A three-wave cross-sectional survey was conducted at 22 colleges in Guangdong Province, involving 381,152 students during three specific time intervals: T1 (baseline, February 3 to 10, 2020), T2 (19 months after baseline, June 10 to 18, 2021), and T3 (37 months after baseline, March 15 to April 22, 2023). Depression (PHQ-9), anxiety (GAD-7), and insomnia (YSIS) were used separately. We analyzed two key network indices: "Expected influence" and "Bridge expected influence". Network stability was assessed through a case-dropping bootstrap program. RESULT: The effective sample sizes for the three periods were as follows: T1 - 164,101 (103,645 females, 63.2 %), T2 - 86,767 (52,146 females, 60.1 %), and T3 - 130,284 (76,720 females, 58.9 %). Across these three periods, the key central symptoms were "Fatigue" (PHQ4), "Restlessness" (GAD5), "Uncontrollable worrying" (GAD2), "Worry too much" (GAD3) and "Sleep insufficiency" (YSIS6). Notably, "Fatigue" (PHQ4), "Restlessness" (GAD5) and "Irritability" (GAD6) consistently served as bridge symptoms. In the T1 and T2 period, "Motor" (PHQ8) acted as a bridge symptom but weakened in T3. CONCLUSION: Throughout the three periods, the mental health issues among Chinese college students displayed characteristics of somatization within the depression-anxiety-insomnia comorbidity network. Over time, anxiety symptoms appeared to become more prominent. Consequently, this study highlights the importance of accurately identifying and promptly intervening in these core symptoms of mental health among college students, as these symptoms may evolve across different stages of a pandemic.


Asunto(s)
Ansiedad , COVID-19 , Depresión , Trastornos del Inicio y del Mantenimiento del Sueño , Estudiantes , Humanos , Trastornos del Inicio y del Mantenimiento del Sueño/epidemiología , Trastornos del Inicio y del Mantenimiento del Sueño/psicología , Estudiantes/psicología , Estudiantes/estadística & datos numéricos , Femenino , Masculino , Estudios Transversales , China/epidemiología , COVID-19/epidemiología , COVID-19/psicología , Adulto Joven , Universidades , Depresión/epidemiología , Depresión/psicología , Ansiedad/epidemiología , Ansiedad/psicología , Adulto , Adolescente , SARS-CoV-2
4.
Comp Biochem Physiol B Biochem Mol Biol ; 273: 110981, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38642610

RESUMEN

The Pacific oyster Crassostrea gigas is rich in taurine, which is crucial for its adaptation to the fluctuating intertidal environment and presents significant potential in improving taurine nutrition and boosting immunity in humans. Cysteine dioxygenase (CDO) is a key enzyme involved in the initial step of taurine biosynthesis and plays a crucial role in regulating taurine content in the body. In the present study, polymorphisms of CDO gene in C. gigas (CgCDO) and their association with taurine content were evaluated in 198 individuals. A total of 24 single nucleotide polymorphism (SNP) loci were identified in the exonic region of CgCDO gene by direct sequencing. Among these SNPs, c.279G>A and c.287C>A were found to be significantly associated with taurine content, with the GG and AA genotype at the two loci exhibiting enhanced taurine accumulation (p < 0.05). Haplotype analysis revealed that the 279GG/287AA haplotype had the highest taurine content of 29.24 mg/g, while the 279AA/287CC haplotype showed the lowest taurine content of 21.19 mg/g. These results indicated that the SNPs of CgCDO gene could influence the taurine content in C. gigas and have potential applications in the selective breeding of high-taurine varieties.

5.
Clin Immunol ; 263: 110206, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38599263

RESUMEN

Patients suffering from sepsis-induced acute lung injury (ALI) exhibit a high mortality rate, and their prognosis is closely associated with infiltration of neutrophils into the lungs. In this study, we found a significant elevation of CD64+ neutrophils, which highly expressed p75 neurotrophin receptor (p75NTR) in peripheral blood of mice and patients with sepsis-induced ALI. p75NTR+CD64+ neutrophils were also abundantly expressed in the lung of ALI mice induced by lipopolysaccharide. Conditional knock-out of the myeloid lineage's p75NTR gene improved the survival rates, attenuated lung tissue inflammation, reduced neutrophil infiltration and enhanced the phagocytic functions of CD64+ neutrophils. In vitro, p75NTR+CD64+ neutrophils exhibited an upregulation and compromised phagocytic activity in blood samples of ALI patients. Blocking p75NTR activity by soluble p75NTR extracellular domain peptide (p75ECD-Fc) boosted CD64+ neutrophils phagocytic activity and reduced inflammatory cytokine production via regulation of the NF-κB activity. The findings strongly indicate that p75NTR+CD64+ neutrophils are a novel pathogenic neutrophil subpopulation promoting sepsis-induced ALI.

6.
Ann Hematol ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647678

RESUMEN

Iron contributes to tumor initiation and progression; however, excessive intracellular free Fe2+ can be toxic to cancer cells. Our findings confirmed that multiple myeloma (MM) cells exhibited elevated intracellular iron levels and increased ferritin, a key protein for iron storage, compared with normal cells. Interestingly, Bortezomib (BTZ) was found to trigger ferritin degradation, increase free intracellular Fe2+, and promote ferroptosis in MM cells. Subsequent mechanistic investigation revealed that BTZ effectively increased NCOA4 levels by preventing proteasomal degradation in MM cells. When we knocked down NCOA4 or blocked autophagy using chloroquine, BTZ-induced ferritin degradation and the increase in intracellular free Fe2+ were significantly reduced in MM cells, confirming the role of BTZ in enhancing ferritinophagy. Furthermore, the combination of BTZ with RSL-3, a specific inhibitor of GPX4 and inducer of ferroptosis, synergistically promoted ferroptosis in MM cell lines and increased cell death in both MM cell lines and primary MM cells. The induction of ferroptosis inhibitor liproxstatin-1 successfully counteracted the synergistic effect of BTZ and RSL-3 in MM cells. Altogether, our findings reveal that BTZ elevates intracellular free Fe2+ by enhancing NCOA4-mediated ferritinophagy and synergizes with RSL-3 by increasing ferroptosisin MM cells.

7.
Adv Healthc Mater ; : e2304485, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38567748

RESUMEN

Ferroptosis is identified as a potential target for anticancer therapy. However, most conventional ferroptosis inducers not only fail to trigger intracellular lipid peroxidation storm, but are also prone to cause ferroptosis-related toxicity through off-target destruction of intracellular antioxidant defense systems. Therefore, a potent and highly tumor-specific ferroptosis induction modality is desired. Herein, a self-cooperative nanomedicine for imaging-guided photothermal ferrotherapy, which is fabricated based on molecular nanoassembly (NA) of DiR (a photothermal probe) and ferrocene (Fc, a reactant of the Fenton reaction), is elaborately exploited. DiR-elicited hyperthermia induces both photothermal therapy (PTT) and a significant acceleration of the kinetics of the Fc-involved Fenton reaction, collaboratively causing a lipid peroxidation storm in tumor cells. In turn, plenty of lipid peroxides boost PTT through the downregulation of heat shock protein 90. As expected, such a self-cooperative NA demonstrates synergetic tumor eradication in the 4T1 breast tumor-bearing mice xenograft model. This study offers a novel nanotherapeutic paradigm for precise multimodal cancer therapy.

8.
Physiol Plant ; 176(2): e14242, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38439528

RESUMEN

The CONSTANS/CONSTANS-Like (CO/COL) family has been shown to play important roles in flowering, stress tolerance, fruit development and ripening in higher plants. In this study, three COL genes, MiCOL6, MiCOL7A and MiCOL7B, which each contain only one CCT domain, were isolated from mango (Mangifera indica), and their functions were investigated. MiCOL7A and MiCOL7B were expressed mainly at 20 days after flowering (DAF), and all three genes were highly expressed during the flowering induction period. The expression levels of the three genes were affected by light conditions, but only MiCOL6 exhibited a clear circadian rhythm. Overexpression of MiCOL6 promoted earlier flowering, while overexpression of MiCOL7A or MiCOL7B delayed flowering compared to that in the control lines of Arabidopsis thaliana under long-day (LD) and short-day (SD) conditions. Overexpressing MiCOL6, MiCOL7A or MiCOL7B in transgenic plants increased superoxide dismutase (SOD) and proline levels, decreased malondialdehyde (MAD) levels, and improved survival under drought and salt stress. In addition, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) analyses showed that the MiCOL6, MiCOL7A and MiCOL7B proteins interact with several stress- and flower-related proteins. This work demonstrates the functions of MiCOL6, MiCOL7A and MiCOL7B and provides a foundation for further research on the role of mango COL genes in flowering regulation and the abiotic stress response.


Asunto(s)
Arabidopsis , Mangifera , Mangifera/genética , Arabidopsis/genética , Ritmo Circadiano , Sequías , Flores/genética , Saccharomyces cerevisiae
9.
Int J Biol Macromol ; 262(Pt 1): 129913, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336312

RESUMEN

SQUAMOSA promoter-binding protein-like (SPL) family genes play an important role in regulating plant flowering and resistance to stress. However, understanding the function of the SPL family in mango is still limited. In a previous study, two MiSPL3 genes, MiSPL3a and MiSPL3b (MiSPL3a/b), were identified in 'SiJiMi' mango and exhibited the highest expression in flowers at the initial flowering stage [24]. Therefore, in this study, we further investigated the expression pattern and gene function of MiSPL3a/b. The results showed that the expression of MiSPL3a was greatest at the end of floral bud differentiation, and MiSPL3b was expressed mainly during the flowering induction and vegetative growth stages. Subcellular localization showed that MiSPL3a/b localized to the nucleus. In addition, ectopic expression of MiSPL3a/b promoted earlier flowering in Arabidopsis thaliana by 3 d-6 d than in wild-type (WT) plants, which increased the expression of SUPPRESSOR OF CONSTANS1 (AtSOC1), FRUITFULL (AtFUL), and APETALA1 (AtAP1). MiSPL3a/b transgenic lines exhibited increased tolerance to drought, GA3, and abscisic acid (ABA) treatments but were sensitive to Pro-Ca treatment. Furthermore, protein interaction analysis revealed that MiSPL3a/b could interact with several stress-related proteins, flowering-related proteins, and the bridge protein 14-3-3. Taken together, MiSPL3a and MiSPL3b acted as positive regulators of flowering time and stress tolerance in transgenic Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Flores/genética , Regiones Promotoras Genéticas/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
ACS Nano ; 18(9): 7136-7147, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38407021

RESUMEN

Tapping into the innate immune system's power, nanovaccines can induce tumor-specific immune responses, which is a promising strategy in cancer immunotherapy. However, traditional vaccine design, requiring simultaneous loading of antigens and adjuvants, is complex and poses challenges for mass production. Here, we developed a tumor nanovaccine platform that integrates adjuvant functions into the delivery vehicle, using branched polyguanidine (PolyGu) nanovaccines. These nanovaccines were produced by modifying polyethylenimine (PEI) with various guanidine groups, transforming PEI's cytotoxicity into innate immune activation. The PolyGu nanovaccines based on poly(phenyl biguanidine ) (Poly-PBG) effectively stimulated dendritic cells, promoted their maturation via the TLR4 and NLRP3 pathways, and displayed robust in vivo immune activity. They significantly inhibited tumor growth and extended mouse survival. The PolyGu also showed promise for constructing more potent mRNA-based nanovaccines, offering a platform for personalized cancer vaccine. This work advances cancer immunotherapy toward potential clinical application by introducing a paradigm for developing self-adjuvanting nanovaccines.


Asunto(s)
Vacunas contra el Cáncer , Nanopartículas , Neoplasias , Animales , Ratones , Nanovacunas , Adyuvantes Inmunológicos , Inmunoterapia , Neoplasias/terapia
11.
Oncologist ; 29(4): 364-e578, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38366886

RESUMEN

BACKGROUND: This study aimed to assess the activity of apatinib plus toripalimab in the second line for patients with advanced gastric or esophagogastric junction cancer (GC/EGJC). METHODS: In this open-label, phase II, randomized trial, patients with advanced GC/EGJC who progressed after first-line chemotherapy were enrolled and received 250 mg apatinib per day plus 240 mg toripalimab on day 1 per 3 weeks (arm A) or physician's choice of chemotherapy (PC, arm B). The primary endpoint of this study was the 1-year survival rate. Progression-free survival (PFS), overall survival (OS), overall response rate (ORR), and safety were assessed as secondary endpoints. RESULTS: Twenty-five patients received apatinib plus toripalimab while 26 were enrolled in arm B. The 1-year survival rates of the 2 groups were 43.3% and 42.3%, respectively (P = .903). The PFS was 2.77 versus 2.33 months (P = .660). The OS was 8.30 versus 9.88 months (P = .539). An objective response was reported in 20.0% of patients in arm A compared to 26.9% in arm B (P = .368), respectively. A total of 6 (24.0%) patients experienced adverse events of grade ≥ 3 in arm A, while 9 (34.6%) patients suffered from adverse events of grade ≥ 3 in arm B. No drug-related deaths occurred in either group. CONCLUSION: Toripalimab plus apatinib treatment in second-line therapy of advanced GC/EGJC showed manageable toxicity but did not improve clinical outcomes relative to PC treatment (ClinicalTrials.gov Identifier: NCT04190745).


Asunto(s)
Anticuerpos Monoclonales Humanizados , Piridinas , Neoplasias Gástricas , Humanos , Anticuerpos Monoclonales Humanizados/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Unión Esofagogástrica , Neoplasias Gástricas/tratamiento farmacológico
12.
J Vis Exp ; (204)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38407307

RESUMEN

Lumbar spinal stenosis (LSS) involves the narrowing of the spinal canal due to degenerative changes in the vertebral joints, intervertebral discs, and ligaments. LSS encompasses central canal stenosis (CCS), lateral recess stenosis (LRS), and intervertebral foramen stenosis (IFS). The utilization of lumbar endoscopic unilateral laminotomy for bilateral decompression (LE-ULBD) has gained popularity in the treatment of CCS and LRS. This popularity is attributed to the rapid development of endoscopic instruments and the progress of endoscopic philosophy. In this technical report, a detailed introduction to the steps and key points of LE-ULBD is provided. Simultaneously, a retrospective review of 132 consecutive patients who underwent LE-ULBD for central canal and/or lateral recess stenosis was conducted. The outcomes after more than two years of follow-up were assessed using the visual analogue score (VAS), Oswestry Disability Index (ODI), Japanese Orthopaedic Association (JOA) scores, and the modified MacNab criteria to evaluate surgical efficacy. All 132 patients underwent LE-ULBD successfully. Among them, 119 patients were rated as "excellent," while 13 patients were rated as "good" based on the modified MacNab criteria during the last follow-up. Incidental dural tears occurred in four cases, but there were no post-operative epidural hematomas or infections. The experience demonstrates that LE-ULBD is a less invasive, effective, and safe approach. It can be considered as an alternative option for treating patients with lumbar central canal stenosis and/or lateral recess stenosis.


Asunto(s)
Escarabajos , Estenosis Espinal , Humanos , Animales , Estenosis Espinal/diagnóstico por imagen , Estenosis Espinal/cirugía , Constricción Patológica , Endoscopía , Región Lumbosacra , Descompresión
13.
Crit Rev Food Sci Nutr ; : 1-12, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329037

RESUMEN

Bivalves are a high-quality source of animal protein for human consumption. In recent years, the demand for bivalve proteins has increased dramatically, leading to a sharp increase in global production of marine bivalves. To date, although the amino acid profiles of many bivalves have been reported, such information has not been well organized. Therefore, there is an urgent need for a comprehensive scientific review of the protein quality of bivalves, especially commercially important edible bivalves. In this context, this study was conducted to evaluate the protein quality of commercially important edible bivalves. In general, most bivalves are rich in protein (> 50% of their dry weight) and amino acids (> 30 g/100g protein). Although most species of bivalves are rich in essential amino acids (EAA) (up to 50 g/100g protein), some species of edible bivalves have very low levels of EAA (< 5 g/100g protein). Based on the AA score, almost all bivalves have at least two limiting AAs. Most bivalve proteins provides delicious flavors with unami, sweetness and a hint of bitterness. The findings of this study not only serve as a a guide for selecting appropriate bivalves based on consumer preferences for specific AAs or AA scores, but also provide information on potential bivalve species for aquaculture to produce higher protein quality to meet the growing demand for high quality animal protein.

14.
BMC Cancer ; 24(1): 8, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166703

RESUMEN

The incidence of prostate cancer (PCa), the most prevalent malignancy, is currently at the forefront. RNA modification is a subfield of the booming field of epigenetics. To date, more than 170 types of RNA modifications have been described, and N6-methyladenosine (m6A) is the most abundant and well-characterized internal modification of mRNAs involved in various aspects of cancer progression. METTL3, the first identified key methyltransferase, regulates human mRNA and non-coding RNA expression in an m6A-dependent manner. This review elucidates the biological function and role of METTL3 in PCa and discusses the implications of METTL3 as a potential therapeutic target for future research directions and clinical applications.


Asunto(s)
Metiltransferasas , Neoplasias de la Próstata , Masculino , Humanos , Metiltransferasas/genética , Metiltransferasas/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , ARN
15.
Sci Total Environ ; 914: 169892, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38211869

RESUMEN

Global human population has increased dramatically over the past 50 years. As a result, marine fisheries and finfish aquaculture have become increasingly unsustainable, driving bivalve aquaculture to become an important food industry for the production of marine animal protein to support the growing market demand for animal protein. It is projected that the rate of bivalve aquaculture expansion will be greatly accelerated in the near future as the human population continues to increase. Although it is generally believed that unfed bivalve aquaculture has less impact on the environment than finfish aquaculture, the rapid expansion of bivalve aquaculture has raised concerns about its potential negative impact, especially on plankton and benthic community. Therefore, there is an urgent need to update the potential effects of bivalve aquaculture on plankton and benthic community. This article reviews the present state of knowledge on environmental issues related to bivalve aquaculture, and discusses potential mitigation measures for the environmental impacts induced by expansion of bivalve aquaculture. This review provides guidance for scientists and farm managers to clarify the current state of research and identify priority research needs for future bivalve aquaculture research. Therefore, specific management strategies can be formulated for the sustainable development and expansion of bivalve aquaculture.


Asunto(s)
Bivalvos , Plancton , Animales , Humanos , Acuicultura , Explotaciones Pesqueras , Peces
16.
Hepatol Int ; 18(2): 623-635, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37880566

RESUMEN

BACKGROUND: The impact of hepatic resection type on long-term oncological prognosis of patients with early-stage hepatocellular carcinoma (HCC) has not been systematically investigated. We sought to determine risk factors, recurrence patterns, and survival outcomes after anatomical resection (AR) versus non-anatomical resection (NAR) for early-stage HCC. METHODS: From a prospectively collected multicenter database, consecutive patients undergoing curative hepatectomy for early-stage HCC were identified. Recurrence patterns, overall survival (OS), recurrence-free survival (RFS), and risk factors were investigated in patients undergoing AR versus NAR using propensity score matching (PSM), subgroup analysis, and COX regression analysis. RESULTS: A total of 3585 patients with early-stage HCC were enrolled, including 1287 and 2298 in the AR and NAR groups, respectively. After PSM, the OS and RFS of patients in the AR group were 58.8% and 42.7%, which were higher than those in the NAR group (52.2% and 30.6%, both p < 0.01). The benefits of AR were consistent across most subgroup analyses of OS and RFS. Multivariable COX regression analysis showed that AR was independently associated with better OS and RFS. Notably, although recurrence patterns were comparable, the risk factors for recurrence were not identical for AR versus NAR. Microvascular invasion and narrow resection margin were only associated with a higher recurrence rate after NAR. CONCLUSIONS: This study demonstrated that AR decreases the risk of tumor recurrence and improves OS and RFS in patients with early-stage HCC. AR should be adopted as long as such a surgical maneuver is feasible for initial treatment of early-stage HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Puntaje de Propensión , Estudios Retrospectivos , Hepatectomía , Recurrencia Local de Neoplasia
18.
Clin Immunol ; 259: 109880, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38142902

RESUMEN

Monocyte aberrations have been increasingly recognized as contributors to renal damage in systemic lupus erythematosus (SLE), however, recognition of the underlying mechanisms and modulating strategies is at an early stage. Our studies have demonstrated that brain-derived neurotrophic factor precursor (proBDNF) drives the progress of SLE by perturbing antibody-secreting B cells, and proBDNF facilitates pro-inflammatory responses in monocytes. By utilizing peripheral blood from patients with SLE, GEO database and spontaneous MRL/lpr lupus mice, we demonstrated in the present study that CX3CR1+ patrolling monocytes (PMo) numbers were decreased in SLE. ProBDNF was specifically expressed in CX3CR1+ PMo and was closely correlated with disease activity and the degree of renal injury in SLE patients. In MRL/lpr mice, elevated proBDNF was found in circulating PMo and the kidney, and blockade of proBDNF restored the balance of circulating and kidney-infiltrating PMo. This blockade also led to the reversal of pro-inflammatory responses in monocytes and a noticeable improvement in renal damage in lupus mice. Overall, the results indicate that the upregulation of proBDNF in PMo plays a crucial role in their infiltration into the kidney, thereby contributing to nephritis in SLE. Targeting of proBDNF offers a potential therapeutic role in modulating monocyte-driven renal damage in SLE.


Asunto(s)
Lupus Eritematoso Sistémico , Nefritis Lúpica , Animales , Humanos , Ratones , Riñón , Ratones Endogámicos MRL lpr , Monocitos , Regulación hacia Arriba , Precursores de Proteínas
19.
Glia ; 72(2): 274-288, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37746760

RESUMEN

Auditory dysfunction and increased neuronal activity in the auditory pathways have been reported in patients with temporal lobe epilepsy, but the cellular mechanisms involved are unknown. Here, we report that microglia play a role in the disinhibition of auditory pathways after status epilepticus in mice. We found that neuronal activity in the auditory pathways, including the primary auditory cortex and the medial geniculate body (MGB), was increased and auditory discrimination was impaired after status epilepticus. We further demonstrated that microglia reduced inhibitory synapses on MGB relay neurons over an 8-week period after status epilepticus, resulting in auditory pathway hyperactivity. In addition, we found that local removal of microglia from the MGB attenuated the increase in c-Fos+ relay neurons and improved auditory discrimination. These findings reveal that thalamic microglia are involved in auditory dysfunction in epilepsy.


Asunto(s)
Microglía , Estado Epiléptico , Ratones , Humanos , Animales , Cuerpos Geniculados/metabolismo , Tálamo , Vías Auditivas/metabolismo , Estado Epiléptico/metabolismo
20.
Artículo en Inglés | MEDLINE | ID: mdl-38082030

RESUMEN

Photodynamic therapy (PDT), extensively explored as a non-invasive and spatio-temporal therapeutic modality for cancer treatment, encounters challenges related to the brief half-life and limited diffusion range of singlet oxygen. Lipid peroxides, formed through the oxidation of polyunsaturated fatty acids by singlet oxygen, exhibit prolonged half-life and potent cytotoxicity. Herein, we employed small molecule co-assembly technology to create nanoassemblies of pyropheophorbide a (PPa) and docosahexaenoic acid (DHA) to bolster PDT. DHA, an essential polyunsaturated fatty acid, co-assembled with PPa to generate nanoparticles (PPa@DHA NPs) without the need for additional excipients. To enhance the stability of these nanoassemblies, we introduced 20% DSPE-PEG2k as a stabilizing agent, leading to the formation of PPa@DHA PEG2k NPs. Upon laser irradiation, PPa-produced singlet oxygen swiftly oxidized DHA, resulting in the generation of cytotoxic lipid peroxides. This process significantly augmented the therapeutic efficiency of PDT. Consequently, tumor growth was markedly suppressed, attributed to the sensitizing and amplifying impact of DHA on PDT in a 4T1 tumor-bearing mouse model. In summary, this molecule-engineered nanoassembly introduces an innovative co-delivery approach to enhance PDT with polyunsaturated fatty acids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...