Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 17(24): 25291-25300, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38085605

RESUMEN

The high dissolution of polyiodides and unstable interface at the anode/electrolyte severely restrict the practical applications of rechargeable aqueous Zn-iodine batteries. Herein, we develop a zinc ion-based montmorillonite (ZMT) electrolyte membrane for synergizing ion sieve and solvation regulation to achieve highly stable Zn-iodine batteries. The rich M-O band and special cation-selective transport channel in ZMT locally tailor the solvation sheath around Zn2+ and therefore achieve high transference number (t+ = 0.72), benefiting for uniform and reversible deposition/stripping of Zn. Meanwhile, the mechanisms for three-step polyiodide generation and shuttle-induced Zn corrosion are highlighted by in situ characterization techniques. It is confirmed that the strong chemical adsorption between O atoms in ZMT and polyiodides species is the key to effectively inhibit the shuffle effect and side reactions. Consequently, the ZMT-based Zn-iodine battery delivers a high capacity of 0.45 mAh cm-2 at 1 mA cm-2 with a much improved Coulombic efficiency of 99.5% and outstanding capacity retention of 95% after 13 500 cycles at 10 mA cm-2. Moreover, owing to its high durability and chemical inertness and structural stability, ZMT-based electrolyte membranes can be recycled and applied in double-sided pouch cells, delivering a high areal capacity of 2.4 mAh cm-2 at 1 mA cm-2.

2.
Heliyon ; 9(10): e21121, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37916117

RESUMEN

In wireless power transfer (WPT) systems using magnetic coupling resonance, when there is a registration deviation between the transmitting and receiving coils, there will be significant fluctuations in the coupling coefficient, output power, and transmission efficiency, which will seriously affect the stability of the WPT system. The coupling coefficient is related to the length and width of the rectangular coil, number of turns, mutual geometric position, and space magnetic medium, making it difficult to maintain a constant value when the coil is offset. A single-emitter two-receiver positive-series rectangular coils structure and a method of calculating the structure are proposed. Then an optimization method for mutual inductance was proposed, and the structural parameters that met the design requirements were obtained using the proposed optimization method. The calculation formula for coupling coefficient was verified through simulation and experiments. The results showed that when the offset distance of the receiving coil along the Y-axis (driving direction) and X-axis reaches half of the length of the transmitting coil and 10 cm, the coupling coefficient, transmission efficiency, and output power remain almost unchanged.

3.
ACS Appl Mater Interfaces ; 15(29): 34704-34710, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37462202

RESUMEN

As a new class of crystalline materials, covalent organic frameworks (COFs) have long-range ordered channels and feasibility to functionalize. The well-arranged pores make it possible to contain and transport ions. Here, we designed a novel functionalized anionic COF-SS-Li by a post-synthetic method utilizing the Povarov reaction of BDTA-COF, anchoring -SO3- groups to the COF backbone and converting the imine linkage to a more stable quinoline unit. The grafted -SO3- groups and directional channels can promote the lithium-ion transport through a hopping mechanism. As a solid-state lithium-ion electrolyte, COF-SS-Li exhibits the conductivities of 9.63 × 10-5 S cm-1 at 20 °C and 1.28 × 10-4 S cm-1 at 40 °C and a wide electrochemical window of 4.85 V. The assembled Li|COF-SS-Li|Li symmetric cell can cycle stably for 600 h at 0.1 mA cm-2. Also, the Li|COF-SS-Li|LiFePO4 cell delivers an initial capacity of 117 mAh g-1 at 0.1 A g-1 and retains a capacity rate of 56.7% after 500 cycles. The research enriches the solid-state electrolytes for lithium-ion batteries.

4.
Chem Commun (Camb) ; 59(45): 6853-6856, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37191238

RESUMEN

A two-dimensional covalent organic framework (NTCDI-COF) with rich redox active sites, high stability and crystallinity was designed and prepared. As a cathode material for lithium-ion batteries (LIBs), NTCDI-COF exhibits excellent electrochemical performance with an outstanding discharge capacity of 210 mA h g-1 at 0.1 A g-1 and high capacity retention of 125 mA h g-1 after 1500 cycles at 2 A g-1. A two-step Li+ insertion/extraction mechanism is proposed based on the ex situ characterization and density functional theory calculation. The constructed NTCDI-COF//graphite full cells can realize a good electrochemical performance.

5.
Nanomaterials (Basel) ; 12(2)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35055272

RESUMEN

The shuttling effect of polysulfides is one of the major problems of lithium-sulfur (Li-S) batteries, which causes rapid capacity fading during cycling. Modification of the commercial separator with a functional interlayer is an effective strategy to address this issue. Herein, we modified the commercial Celgard separator of Li-S batteries with one-dimensional (1D) covalent triazine framework (CTF) and a carbon nanotube (CNT) composite as a functional interlayer. The intertwined CTF/CNT can provide a fast lithium ionic/electronic transport pathway and strong adsorption capability towards polysulfides. The Li-S batteries with the CTF/CNT/Celgard separator delivered a high initial capacity of 1314 mAh g-1 at 0.1 C and remained at 684 mAh g-1 after 400 cycles-1 at 1 C. Theoretical calculation and static-adsorption experiments indicated that the triazine ring in the CTF skeleton possessed strong adsorption capability towards polysulfides. The work described here demonstrates the potential for CTF-based permselective membranes as separators in Li-S batteries.

6.
ACS Appl Mater Interfaces ; 13(41): 49313-49321, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34617723

RESUMEN

Silicon oxide (SiOx, 0 < x < 2) is considered one of the most promising anode materials for next-generation lithium-ion batteries due to its high theoretical capacity. However, its commercial application is limited by the non-negligible volume change during cycling. Herein, a three-dimensional (3D) structure of carboxymethyl cellulose (CMC) cross-linked with iminodiacetic (c-CMC-IDA150) was facilely formed through in situ thermal cross-linking of CMC and iminodiacetic acid (IDA) in the fabrication process of the electrode, which could construct a robust network to restrain the volume change of the SiOx anode and maintain the integrity of the electrode. In addition, the 3D cross-linked c-CMC-IDA150 provides sufficient contact sites to improve the adhesive strength. Thus, SiOx@c-CMC-IDA150 shows a prolonged cycle life, achieving a capacity of 1020 mAh g-1 after 100 cycles at a current density of 0.2 A g-1. With the increase in the current density to 1.0 A g-1, SiOx@c-CMC-IDA150 exhibits a reversible capacity of 899 mAh g-1 after 200 cycles with a capacity retention of 70.2%. This work provides a potential perspective to fabricate high-performance SiOx anodes and promote the stability of high-capacity Si-based anodes.

7.
Polymers (Basel) ; 11(7)2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31266198

RESUMEN

A novel tandem catalysis system consisted of salicylaldiminato binuclear/mononuclear titanium and 2,6-bis(imino)pyridyl iron complexes was developed to catalyze ethylene in-situ copolymerization. Linear low-density polyethylene (LLDPE) with varying molecular weight and branching degree was successfully prepared with ethylene as the sole monomer feed. The polymerization conditions, including the reaction temperature, the Fi/Ti molar ratio, and the structures of bi- or mononuclear Ti complexes were found to greatly influence the catalytic performances and the properties of obtained polymers. The polymers were characterized by differential scanning calorimetry (DSC), high temperature gel permeation chromatography (GPC) and high temperature 13C NMR spectroscopy, and found to contain ethyl, butyl, as well as some longer branches. The binuclear titanium complexes demonstrated excellent catalytic activity (up to 8.95 × 106 g/molTi·h·atm) and showed a strong positive comonomer effect when combined with the bisiminopyridyl Fe complex. The branching degree can be tuned from 2.53 to 22.89/1000C by changing the reaction conditions or using different copolymerization pre-catalysts. The melting points, crystallinity and molecular weights of the products can also be modified accordingly. The binuclear complex Ti2L1 with methylthio sidearm showed higher capability for comonomer incorporation and produced polymers with higher branching degree and much higher molecular weight compared with the mononuclear analogue.

8.
RSC Adv ; 8(13): 6954-6964, 2018 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35540336

RESUMEN

Binuclear and multinuclear complexes have attracted much attention due to their unique catalytic performances for olefin polymerization compared with their mononuclear counterparts. In this work, a series of phenyl-bridged bis-ß-carbonylenamine [O-NSR] (R = alkyl or phenyl) tridentate ligands and their binuclear titanium complexes (Ti2L1-Ti2L5) were synthesized and characterized by 1H NMR, 13C NMR, FTIR and elemental analysis. The molecular structure of ligand L2 (R = n Pr) and its corresponding Ti complex Ti2L2 were further investigated by single-crystal X-ray diffraction, which showed that each titanium coordinated with six atoms to form a distorted octahedral configuration along with the conversion of the ligand from ß-carbonylenamine to ß-imino enol form. Under the activation of MMAO, these complexes catalyzed ethylene polymerization and ethylene/α-olefin copolymerization with extremely high activity (over 106 g mol (Ti)-1 h-1 atm-1) to produce high molecular weight polyethylene. At the same time, wider polydispersity as compared with the mononuclear counterpart TiL6 was observed, indicating that two active catalytic centers may be present, consistent with the asymmetrical crystal structure of the binuclear titanium complex. Furthermore, these complexes possessed better thermal stability than their mononuclear analogues. Compared with the complexes bearing alkylthio sidearms, the complex Ti2L5 bearing a phenylthio sidearm exhibited higher catalytic activity towards ethylene polymerization and produced polyethylene with much higher molecular weight, but with an appreciably lower 1-hexene incorporation ratio. Nevertheless, these bis-ß-carbonylenamine-derived binuclear titanium complexes showed much higher ethylene/1-hexene copolymerization activity and 1-hexene incorporation ratios as compared with the methylene-bridged bis-salicylaldiminato binuclear titanium complexes, and the molecular weight and 1-hexene incorporation ratio could be flexibly tuned by the initial feed of α-olefin commoners and catalyst structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...