Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 89(10): 10J127, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30399710

RESUMEN

In order to achieve long-pulse H-mode plasma scenario over 400 s with high heating power in the Experimental Advanced Superconducting Tokamak (EAST) device, the lower graphite divertor will be upgraded into a tungsten (W) divertor with active water cooling, which consists of the W/Cu monoblock units and the W flat-tile units as the divertor plasma facing components. As a fundamental diagnostic tool, the divertor Langmuir probe (Div-LP) diagnostic system will be upgraded accordingly. This paper presents the design of two kinds of new Div-LP systems, which are planned to be utilized on the W/Cu monoblock units and the W flat-tile units for the upgraded lower tungsten divertor, respectively, including their structures and preliminary poloidal and toroidal layouts. The Div-LP diagnostic system can measure the plasma parameters with the schemes of triple-probe, double-probe, and single-probe, to obtain the spatial and temporal distribution of plasma behavior on the divertor targets, which is useful for the discharge control and operation in EAST. In addition, the thermal analysis of the two kinds of probe assemblies is also carried out by using the three-dimensional finite element code ANSYS, which is aimed to get the optimal designs to withstand the long-pulse and high-power operation in EAST future experiments.

2.
Rev Sci Instrum ; 87(8): 083504, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27587120

RESUMEN

In order to withstand rapid increase in particle and power impact onto the divertor and demonstrate the feasibility of the ITER design under long pulse operation, the upper divertor of the EAST tokamak has been upgraded to actively water-cooled, ITER-like tungsten mono-block structure since the 2014 campaign, which is the first attempt for ITER on the tokamak devices. Therefore, a new divertor Langmuir probe diagnostic system (DivLP) was designed and successfully upgraded on the tungsten divertor to obtain the plasma parameters in the divertor region such as electron temperature, electron density, particle and heat fluxes. More specifically, two identical triple probe arrays have been installed at two ports of different toroidal positions (112.5-deg separated toroidally), which can provide fundamental data to study the toroidal asymmetry of divertor power deposition and related 3-dimension (3D) physics, as induced by resonant magnetic perturbations, lower hybrid wave, and so on. The shape of graphite tip and fixed structure of the probe are designed according to the structure of the upper tungsten divertor. The ceramic support, small graphite tip, and proper connector installed make it possible to be successfully installed in the very narrow interval between the cassette body and tungsten mono-block, i.e., 13.5 mm. It was demonstrated during the 2014 and 2015 commissioning campaigns that the newly upgraded divertor Langmuir probe diagnostic system is successful. Representative experimental data are given and discussed for the DivLP measurements, then proving its availability and reliability.

3.
Data Brief ; 7: 798-813, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27077081

RESUMEN

We provide the dataset of the vacancy (interstitial) formation energy, segregation energy, diffusion barrier, vacancy-interstitial annihilation barrier near the grain boundary (GB) in bcc-iron and also the corresponding interactive range. The vacancy-interstitial annihilation mechanisms in the bulk, near the GB and at the GB at across scales were given.

4.
Sci Rep ; 5: 16014, 2015 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-26531172

RESUMEN

The refractory tungsten alloys with high ductility/strength/plasticity are highly desirable for a wide range of critical applications. Here we report an interface design strategy that achieves 8.5 mm thick W-0.5 wt. %ZrC alloy plates with a flexural strength of 2.5 GPa and a strain of 3% at room temperature (RT) and ductile-to-brittle transition temperature of about 100 °C. The tensile strength is about 991 MPa at RT and 582 MPa at 500 °C, as well as total elongation is about 1.1% at RT and as large as 41% at 500 °C, respectively. In addition, the W-ZrC alloy plate can sustain 3.3 MJ/m(2) thermal load without any cracks. This processing route offers the special coherent interfaces of grain/phase boundaries (GB/PBs) and the diminishing O impurity at GBs, which significantly strengthens GB/PBs and thereby enhances the ductility/strength/plasticity of W alloy. The design thought can be used in the future to prepare new alloys with higher ductility/strength.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA